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Abstract

Throughout the history of computer systems, there has been a never-ending
arms race developing, in an effort to gain the upper hand when trying to
attack or defend a system. On one hand of the equation, we find adversaries
trying to come up with new ways to attack and bypass any security measures
in-place. The research community (industrial, academic or otherwise), on the
other hand, tries to propose new and safe ways to develop software. The
main aim of these attempts is to reduce bugs and vulnerabilities in code,
as much as possible. Furthermore, new and innovative ideas for security
mechanisms are constantly being developed, in order to defend against any
attempt to jeopardize the underlying system. However, complete security of
a program is not possible due to increased software complexity and market
cost considerations. Consequently, the aforementioned vulnerabilities need
to be detected before an attacker gets a chance to take advantage of them, or
“catch in the act” the attacker, while trying to actively exploit them.

This dissertation focuses on providing a unified approach that, during ex-
ecution, ensures the security of the applications and the underlying system
by extension. This approach breaks up an application into different compo-
nents and detects attacks against them. It achieves this, by monitoring all the
execution paths among the components. Furthermore, it responds to these
attacks properly, by enforcing a set of security policies. These policies ensure
a high degree of security, when an application is being executed.

The thesis starts by listing a number of challenges that make its aim diffi-
cult and complicated, and its contributions towards delivering a secure oper-
ating environment. Continuing, it presents a comprehensive list of the state-
of-the-art research and approaches that focus in the same field as what we
are trying to achieve, i.e., defend against Code Injection/Reuse Attacks.

The thesis, then, presents the design considerations of the unified ap-
proach: (i) its architecture, (ii) the adversary model considered during the
stage of development, (iii) the security assumptions for the underlying sys-
tem, (iv) the testbed used during implementation and testing and (v) the
use-cases used to evaluate its applicability and efficiency.

The thesis, also, shows how to enforce access control for library calls at the
user-code level, in order to restrict access to specific functions. Furthermore,
a library is divided in smaller segments, offering more precise control over
any access attempt. The thesis, then, deals with an approach to generate the
security policies that can be applied at run-time and dictate to the monitoring
sub-system what transitions are permitted.
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Following, the thesis presents a kernel-level mechanism that can cooper-
ate with its user-level counterpart, in the attempt to strengthen the underly-
ing system. By modifying the Memory Management Unit, this mechanism
divides the memory space of a running application into separate code re-
gions based on page permissions, and determines if a call should be made
from one region to another. In this way, we provide a finer-grained level
of compartmentalization of a process’s memory area, than what is currently
the norm. Additionally, the thesis presents a training environment, which
has been incorporated in the platform of the THREAT-ARREST EU H2020
research project.

Concluding, the thesis sets a number of requirements and characteristics
that any security mechanism should have, in order to be practical and have
better chances of gaining wide acceptance and adoption. Moreover, the over-
all approach is compared to the state-of-the-art mechanisms, which shows
that it can stand as a concrete solution among them.
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Kurzfassung

Im Laufe der Geschichte der Computersysteme hat sich ein nicht enden
wollendes Wettrüsten entwickelt, bei dem es darum geht, die Oberhand zu
gewinnen, wenn es darum geht, ein System anzugreifen oder zu vertei-
digen. Auf der einen Seite der Gleichung stehen die Gegner, die ver-
suchen, neue Wege zu finden, um Angriffe zu starten und die vorhan-
denen Sicherheitsmaßnahmen zu umgehen. Auf der anderen Seite ver-
sucht die (industrielle, akademische oder sonstige) Forschungsgemeinschaft,
neue und sichere Wege zur Entwicklung von Software vorzuschlagen. Das
Hauptziel dieser Versuche besteht darin, Fehler und Schwachstellen im Code
so weit wie möglich zu reduzieren. Außerdem werden ständig neue und
innovative Ideen für Sicherheitsmechanismen entwickelt, um jeden Versuch
abzuwehren, das zugrunde liegende System zu gefährden. Eine vollständige
Sicherheit eines Programms ist jedoch aufgrund der zunehmenden Soft-
warekomplexität und der Kostenerwägungen des Marktes nicht möglich.
Folglich müssen die oben genannten Schwachstellen entdeckt werden, bevor
ein Angreifer die Chance hat, sie auszunutzen, oder der Angreifer muss auf
frischer Tat ertappt werden, während er versucht, sie aktiv auszunutzen.

Diese Dissertation konzentriert sich auf die Bereitstellung eines ein-
heitlichen Ansatzes, der während der Ausführung die Sicherheit der Anwen-
dungen und des zugrundeliegenden Systems durch Erweiterung gewährleis-
tet. Dieser Ansatz zerlegt eine Anwendung in verschiedene Komponenten
und erkennt Angriffe auf diese Komponenten. Dies wird erreicht, indem alle
Ausführungspfade zwischen den Komponenten überwacht werden. Außer-
dem wird auf diese Angriffe angemessen reagiert, indem eine Reihe von
Sicherheitsrichtlinien durchgesetzt wird. Diese Richtlinien gewährleisten ein
hohes Maß an Sicherheit, wenn eine Anwendung ausgeführt wird.

Die Arbeit beginnt mit einer Auflistung einer Reihe von Herausforderun-
gen, die das Ziel schwierig und kompliziert machen, und ihren Beiträgen
zur Bereitstellung einer sicheren Betriebsumgebung. Anschließend wird
eine umfassende Liste der neuesten Forschungsergebnisse und -ansätze
vorgestellt, die sich auf das gleiche Gebiet konzentrieren wie das, was wir zu
erreichen versuchen, nämlich die Verteidigung gegen Code Injection/Reuse
Attacks.

Anschließend werden die Designüberlegungen des einheitlichen
Ansatzes vorgestellt: (i) seine Architektur, (ii) das in der Entwick-
lungsphase berücksichtigte Gegner-Modell, (iii) die Sicherheitsannahmen
für das zugrundeliegende System, (iv) die während der Implementierung
und des Testens verwendete Testumgebung und (v) die zur Bewertung
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seiner Anwendbarkeit und Effizienz verwendeten Anwendungsfälle.
In dieser Arbeit wird auch gezeigt, wie die Zugriffskontrolle für Bib-

liotheksaufrufe auf Benutzercode-Ebene durchgesetzt werden kann, um
den Zugriff auf bestimmte Funktionen zu beschränken. Außerdem wird
eine Bibliothek in kleinere Segmente unterteilt, was eine genauere Kon-
trolle über jeden Zugriffsversuch ermöglicht. Die Arbeit befasst sich
also mit einem Ansatz zur Erstellung von Sicherheitsrichtlinien, die zur
Laufzeit angewendet werden können und dem Überwachungs-Subsystem
vorschreiben, welche Übergänge erlaubt sind.

Anschließend wird ein Mechanismus auf Kernel-Ebene vorgestellt, der
mit seinem Gegenstück auf Benutzerebene zusammenarbeiten kann, um
das zugrunde liegende System zu stärken. Durch eine Modifikation der
Memory Management Unit teilt dieser Mechanismus den Speicherbereich
einer laufenden Anwendung auf der Grundlage von Seitenberechtigungen
in separate Coderegionen auf und bestimmt, ob ein Aufruf von einer Region
in eine andere erfolgen soll. Auf diese Weise bieten wir eine feinere Un-
terteilung des Speicherbereichs eines Prozesses, als es derzeit die Norm ist.
Darüber hinaus wird in dieser Arbeit eine Trainingsumgebung vorgestellt,
des Forschungsprojekts THREAT-ARREST, welches von der EU im Rahmen
des H2020-Programms gefördert wurde, integriert wurde.

Abschließend stellt die Arbeit eine Reihe von Anforderungen und Merk-
malen auf, die jeder Sicherheitsmechanismus haben sollte, um praktikabel
zu sein und bessere Chancen auf eine breite Akzeptanz und Annahme zu
haben. Darüber hinaus wird der Gesamtansatz mit den modernsten Mecha-
nismen verglichen, was zeigt, dass er als konkrete Lösung unter diesen beste-
hen kann.
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Part I

THE LANDSCAPE
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1
Introduction

Throughout the history of computer systems, we have witnessed an unend-
ing race between attacks and defenses. As the complexity of systems is ever-
increasing, we have not seen a commensurate improvement in code design
and development. This results in new challenges and vulnerabilities being
discovered every day, while users increasingly require security considera-
tions and provisions for their applications. At the same time, there is a par-
allel and oftentimes one-step-ahead increase in attackers’ capabilities and ef-
fectiveness [Pog; Lip]. Hence, systems are becoming ever more vulnerable to
attacks at multiple levels.

To make matters worse, unlike the early-day Morris worm, where the in-
tent was just to show off, today there may be more serious incentives behind
an attack: monetary gain, industrial espionage, disruption of public benefit
services, etc. This means that the stakes, now, are higher and the problem has
become more difficult to solve.

Complete security of a program is unfeasible and it is further impaired
by two main factors: (a) the increasing complexity of computer systems and
(b) market considerations involving cost and time-to-market. These factors
generally work to the detriment of the code quality and often lie behind most
security vulnerabilities.

Conceding that vulnerable code will be included in production systems,
there is a need to either detect these vulnerabilities so that they may be fixed
before an adversary can exploit them in a zero-day attack or determine if such
a vulnerability is actively being exploited. Systems such as Control Flow In-
tegrity (CFI) [Aba+05], systrace(8) [Pro03] or SecModule [KP06], examine
each change in the execution of a program by intercepting all calls during
run-time at various levels (machine-code instructions, system calls, library
calls, etc.). This approach offers a variety of options when dealing with a
security breach, without necessarily terminating the offending process (e.g.,
rewriting function arguments, opening virtual files, etc.). However, many
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of these techniques prove to be labor intensive and error prone (due to pro-
gram preprocessing, application patching, argument evaluation, etc.), as well
as computationally expensive for generic use.

1.1 Challenges

Several issues can be identified that make securing a running application
(and the underlying system by extension) a difficult task. Here, we shed
some light to the most relevant of these challenges, which we later attempt
to tackle in this thesis.

1.1.1 Code Diversity

The majority of programs nowadays are dynamically-linked, meaning that
some portions of code that are required for the program to run are contained
in external shared libraries and are only included in the program at run-time.
This has two main advantages:

(a) Commonly-used functions (possibly developed by a third party) are in-
cluded in a unique shared library that is maintained separately from the
main application. This lightens the load of the application developer
and can significantly reduce the size of the executable, thus saving disk
space.

(b) Several applications running simultaneously can use the functionality
provided by a specific shared library, thereby reducing run-time mem-
ory usage while enhancing performance.

However, this means that in order an application be fully functional (es-
pecially the more complex ones), it must use a diverse set of libraries that
are written by different teams with varying degrees of experience in writ-
ing secure code. For example, in Table 1.1 we can see the set of libraries -
tens of them - that comprise the AnyDesk remote desktop application which
provides remote access to personal computers and other devices running the
host application. On one hand, the AnyDesk team does not need to concern
itself with “reinventing the wheel” with respect to the functionality provided
by the other libraries, it just uses them out-of-the-box. On the other hand,
however, the developers of each library are responsible for the proper func-
tionality and security of their product, in order the main application work
seamlessly and without being vulnerable to attacks.

The more varying code quality libraries are included in an application,
the more chances there are of the underlying system ending up in an inse-
cure state. This stems from the fact that if an application is compromised
by a vulnerability found in one of the libraries, the entire system (computer,
network, etc.) can be compromised as well, as a result.

Several recent studies [BJ21; MSW17; Ven+19; AC19] indicate that, despite
the fact that software development teams tend to increasingly incorporate
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AnyDesk Libraries
anydesk (main) libnss_dns libnss_mdns4_minimal libnss_files

libnss_nis libdatrie libxcb-dri2 libxcb-present
libnss_compat libgpg-error libgcrypt liblzma
libgraphite2 libuuid libdrm libXxf86vm

libxcb-glx libglapi libxshmfence libxcb-sync
libxcb-dri3 libXdmcp libXau libexpat

libpcre libffi libthai libharfbuzz
libresolv libselinux libz libxcb-render
libpng12 libpixman libXcomposite libXcursor

libXinerama libc libgcc_s libm
libstdc++ libdl libgmodule libpangox

libICE libSM libXt libXmu
libGL libGLU libgdkglext libgtkglext

libxkbfile libXdamage libXfixes libXext
libXtst libXrandr libXi libpthread

libxcb-shm librt libXrender libpolkit-gobject
libxcb libX11 libX11-xcb libfreetype

libfontconfig libglib libgobject libpango
libpangoft2 libgio libgdk_pixbuf libcairo

libatk libpangocairo libgdk-x11 libgtk-x11
ld libsystemd

TABLE 1.1: Libraries comprising the AnyDesk main application

security practices into their software development processes, organizational
challenges - such as lack of funding, limited resources and process support -
are frequently responsible for security vulnerabilities still finding their way
into production-level software. Moreover, security patches are not being ap-
plied fast enough, leaving the underlying system susceptible to attacks for a
period of time. Even decades-old vulnerabilities (e.g., SQL injections, buffer
overflows, etc.) are still prominent among the top critical security risks today,
in relevant lists such as [OWA] and continue to affect popular and widely-
used products even after many years of use, as for example the zlib com-
pression library which was discovered to be vulnerable to a buffer overflow
after a long time, resulting in a denial-of-service or arbitrary code execution
condition [Inc05].

1.1.2 Security Policy Development and Enforcement

In order to intercept an attack before it can cause any harm, it is imperative to
strictly monitor and control the interactions between the libraries of an appli-
cation. Security policies are a set of rules that define (a) who should talk to
whom, (b) what conditions constitute unexpected program/library behav-
ior which may designate a possible attack, (c) under which circumstances a
suspicious event may be considered benign or malicious and finally (d) the
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course of action taken when such abnormal behavior is detected. The possi-
bly large number of libraries that a program uses, makes creating such com-
prehensive security policies - that include the complete list of communication
paths among the different libraries, as well as the exact points in execution
time - an important task. This task needs to be carefully undertaken as it de-
pends on the complexity of the library/application (i.e. its development as
well as its functionality), the way that the paths among the several commu-
nicating parts are provided (automatically produced, provided by the devel-
oping team, requiring sophisticated analysis tools, etc.) and the effort/time
required to track these paths. Another differentiating factor is the evolving
computer ecosystem, in which applications/libraries are updated constantly
either to provide new and improved functionality or to close security gaps
previously discovered. Any mismatches in the configuration of the security
policy may lead to mistakes that prevent the application from functioning as
intended, or worse, create new security vulnerabilities that potential attack-
ers can exploit.

The enforcement of security policies is another important aspect. Using
a centralized evaluation and enforcement engine to authorize the various in-
teractions between libraries is not optimal, as the centralized engine becomes
a single point of failure. An attack vector could possibly circumvent the en-
gine and have access to the system as if no access control protection was in
place, or at the very least target the engine in order to drain the system’s
resources leaving it in an unresponsive state.

1.1.3 Behavioral-based Monitoring

Software systems are constantly evolving, as they are regularly being up-
dated with new functionality and security patches throughout their life-
cycle. With each new addition/update there is a high chance that a new
vulnerability will be introduced and this cycle goes on and on.

“Why aren’t defects fixed more cleanly? First, even a subtle defect shows
itself as a local failure of some kind. In fact, it often has system-wide
ramifications, usually non-obvious. Any attempt to fix it with minimum
effort will repair the local and obvious, but unless the structure is pure
or the documentation very fine, the far-reaching effects of the repair will
be overlooked. Second, the repairer is usually not the man who wrote the
code, and often he is a junior programmer or trainee.”

The Mythical Man-Month
Frederick P. Brooks, Jr.

Addison Wesley Pub. Co., 1975
25th Anniversary edition, 2000.

Static and dynamic code analysis are used to detect these vulnerabilities.
During static analysis an application’s source code is examined before it is
executed, taking into consideration a given set of rules or coding standards.
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However, not all conditions are met where a vulnerability can be discovered,
making dynamic analysis an imperative complimentary technique that ex-
amines the program-under-test during or after execution. For example, the
fuzzing method provides invalid, unexpected, or random data as inputs to
the application aiming to identify implementation faults or bugs that may
lead to vulnerabilities. However, these approaches cannot be used alone, as
experience shows that applications are still troubled by vulnerabilities.

Signature-based monitoring mechanisms, which are employed by the ma-
jority of anti-virus solutions, update a set of static security rules whenever
new threats appear. This may not always be adequate, especially when deal-
ing with the exploitation of zero-day vulnerabilities which have never been
discovered before or self-mutating viruses, meaning there is no signature
matching them yet. This shows the need for behavioral-based monitoring
mechanisms that predict and detect at run-time the off-nominal behavior of
(the libraries of) an application. However, the definition of the nominal be-
havior of the different libraries that comprise an application is a challenge,
due to the fact that identifying inaccurate or wrong behavior may lead to
false positives (the monitoring system considers a library that is behaving
nominally as malicious) or false negatives (identify a malicious library as be-
nign)

1.1.4 Security Trade-offs

As already established, complete security of a program is unfeasible. Even if
all available mechanisms are adopted and work well together, there are still
chances that an attack will happen. So, when deploying a security mecha-
nism, there is an important decision to be made about how it will respond
to an incident. If the mechanism is very strict, it will lead to a high rate of
false positives and may disrupt the operation of the whole system, affect-
ing this way its availability, usability and overall performance. On the other
hand, if the mechanism is overly permissive in order to have less impact on
these traits, this will result in a high number of false negatives, where, mali-
cious attempts are considered benign and are left to continue executing. The
golden rule needs to be achieved with regards to the response of the security
mechanism to an incident and the level of security provided, compared to
the availability, usability and performance penalties incurred by employing
the mechanism.

Furthermore, the security mechanism itself needs to be secure and cor-
rectly configured, in order to not impede the proper functionality of the un-
derlying system, which may otherwise have unforeseen ramifications, e.g.
as in the case of the Ariane V booster crash [Lan96], where a simple counter
overflow caused an exception that was left uncaught and ultimately resulted
in the launch vehicle crashing. In other words, it was the enforcement mech-
anism that caused the crash.
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1.2 Contribution

All the challenges mentioned above show that the need for a unified ap-
proach that will ensure the security of the running applications and the un-
derlying system by extension, continuing to deliver a secure operating en-
vironment and reacting properly even when an attack is successful, is still
prevalent. Although this has been an important research topic for several
years, in this thesis we aim to advance the efforts to defend against con-
trol flow-hijacking attacks, taking into consideration related work in the area,
while improving many of its drawbacks. By observing the control flow trans-
fers between a program’s memory segments during run-time, we can deduce
either that the program behaves nominally or that it misbehaves because the
execution flow is not as expected. If there is a deviation from the expected
execution path, this will raise suspicion. However, we do not know if this
differentiation in execution is caused by a deliberate attack or by a coding
bug. In short, we aim to prove that

“By monitoring all transfers of control and by enforcing the orderly
inter-segment transfers, we can detect and ensure the proper operation
of programs. Hence we can defend against various attacks that attempt
to hijack a program’s execution.”

Specifically, we develop a security framework that monitors the execution
of the software, controls its every communication with any and all ubiquitous
external shared libraries and steps in when there is suspicion of foul play.
Furthermore, with this approach users can be trained to determine charac-
teristics of such actions in order to be aware and take matters into their own
hands if everything else fails.

The contributions of the thesis can be categorized in two levels: a strategic
one and a tactical one. The former category represents our high-level ap-
proach on how to deal with the challenges identified in the previous Section.
The latter category deals with what we do in order to materialize our ap-
proach.

The strategic level comprises of these contributions:

• Limit the surface available to an attacker when trying to compromise a
piece of software, forcing them to exploit vulnerabilities and bugs only
found in a small portion of the application. Execution can continue only
under specific circumstances (stated in a security policy) [TP19; TP21a;
Tsa21; TP21b].

• Establish a Trusted Execution Environment-like region at the memory
space of an instrumented application [TP21b].

• Produce security policies, upon which execution depends in order to
continue [Tsa18].

• Implement and evaluate the prototype and demonstrate its effective-
ness and efficiency by analyzing known, real-world applications and
exploits [TP19; TP21a; TP21b; Tsa18].
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• Present a training environment where users can look for potential is-
sues or vulnerabilities in code that is distributed in binary form [TP17;
TP20].

• Release the prototypes as an open source project to allow kernel and
application developers to validate their code with it.

At the same time, the tactical level - i.e., the actions taken to tackle what
is described in the list above - includes:

• Presenting a modified Linux kernel that separates the memory of a run-
ning application into regions at the granularity of shared libraries/exe-
cutables [TP19; TP21a; TP21b].

• Developing a novel technique to perform the separation, leveraging the
Memory Management Unit (MMU) [TP19; TP21a; TP21b].

• Presenting a novel technique to intercept any attempt to invoke a sepa-
rate region, based on page faults [TP19; TP21a; TP21b].

• Installing a policy enforcement engine - gate (specially crafted library)
- “before” each region. This gate is a mechanism that allows the con-
trolled entry into a library. The kernel intercepts all calls to a destina-
tion library and redirects them through that gate. This is similar to the
system call entry point provided by most operating systems that distin-
guish between user and supervisor domains [TP19; TP21a; TP21b].

• Dynamically (un)mapping secure private pages in each separate re-
gion. Information stored in these pages is accessible only by a gate and
only when the CPU executes code within the associated region [TP21b].

• Developing a technique to further break up a library into smaller sec-
tions, based on their functionality or even distinct functions. In this
way, only the absolutely necessary functions/portions are loaded dur-
ing execution and the attack surface related to a library is minimized.
Additionally, less memory is used by the running program [Tsa21].

• Instrumenting and analyzing the execution of an application (Sophos
AntiVirus solution), in order to present our approach for producing a
security policy. Based on information uncovered during this procedure,
we subsequently compromise the application [Tsa18].

This work has been a part of several EU H2020 research projects: SHARCS
under Grant Agreement No. 644571, THREAT-ARREST under Grant Agree-
ment No. 786890, I-BiDaaS under Grant Agreement No. 780787, CONCOR-
DIA under Grant Agreement No. 830927, SmartShip under Grant Agreement
No. 823916, SENTINEL under Grant Agreement No. 101021659 and ROX-
ANNE under Grant Agreement No. 833635. Additionally, it was supported
by the German Research Foundation (DFG), Controlling Concurrent Change
(CCC) project, funding number FOR 1800.
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1.3 Layout

This thesis is divided into three parts. The first part provides a landscape
for the thesis via three chapters; Chapter 2 gives background information
about Code Injection/Reuse Attacks (C[IR]As) and the different vulnerabil-
ities that accompany them, as well as the defense mechanisms which have
been proposed to mitigate these attacks. Chapter 3 presents the design of
our framework, the software and hardware setup and the use-cases which
are employed throughout the thesis. In addition, it introduces several as-
sumptions about the underlying system, as well as the adversaries that it
may face.

This framework is detailed in the second part of the thesis, which includes
two chapters. Chapter 4 details the user-level part of the framework: how it is
implemented, a use-case where it is applied, how it can strengthen its collab-
oration with the kernel counterpart via finer-grained segmentation and how
it can create a policy to be enforced. In Chapter 5, we explain the kernel-level
part of the framework, its design and implementation specifics and two situ-
ations where it is applied (a use-case analysis and a training environment).

In the last part of the thesis, in Chapter 6, we set a number of require-
ments that we believe a mechanism needs to have in order to be practical
and evaluate the state of the art and compare it to our framework, based on
them. Furthermore, we propose our envisaged directions for future research.
Finally, we include a list of the research published during the writing of this
thesis, of the figures, of the tables and of the bibliography contained in the
thesis.
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2
Background and Related Work

The use of languages that are not type-safe and the widespread use of point-
ers that do not support bounds checking, created a seemingly infinite se-
ries of buffer overflow attacks and resulted in an arms race to eliminate
them. Nevertheless, we still see instances of classical buffer overflow attacks
against fairly modern systems (e.g the attack against the time measurement
ECU [Ham+18; LSL15]). By mounting such an attack, an adversary can even-
tually mislead the CPU to jump to an address that was not intended by the
running program. This may cause the execution of (i) foreign code injected
by the attacker into the address space of the program, (ii) code that already
exists within the address space of the victim, or (iii) arbitrary code (junk data,
middle of instructions, etc.) that is also located within the address space of
the process. This is a direct result of the ability of code to jump anywhere
within a process’s memory area, as well as the absence of policy checks when
a transfer is performed.

2.1 Timeline

Compiler and architectural modifications (e.g., the No-eXecute (NX)
bit [WX03] that prevents the execution of code from the heap or stack) have
made Code Injection Attacks (CIA) all but impossible.

Instead of trying to inject custom code, the attackers responded by using
code already present in a program’s memory space, resulting in a new type of
attacks, i.e. CRAs. One of the most common forms of CRA is return-to-libc.
It first appeared in 1997 [Des97], redirecting the flow of execution in the libc

library. However, in this attack the adversary could only execute straight-
line code, chaining together one function after another, resulting in attacks
that are not Turing-complete. Stack smashing protection [Cow+98; Hir03]
and randomization techniques such as Address Space Layout Randomiza-
tion (ASLR) [PaX01], were then introduced to defeat return-to-libc attacks.
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In response, researchers proposed more sophisticated approaches - namely
Return Oriented Programming (ROP) [Sha07; Che+10; Roe+12] and Jump
Oriented Programming (JOP) [Ble+11]. These attack vectors form snippets
of code located at predetermined memory addresses, “gadgets”, chaining to-
gether legitimate commands already in memory. In ROP, each gadget ends
with a “return” instruction. When it is reached, it diverts control to the next
gadget, eventually forming a sequence of gadgets that perform the unautho-
rized action desired by the attacker.

The chained execution of gadgets ending in RET, has enabled researchers
to develop several anti-ROP defenses (eg. [PPK13; Che+14; Fra12]) to detect
or prevent it. In order to circumvent these methods, JOP was presented. This
attack also uses chained gadgets to execute arbitrary code, but it does not
need RET instructions to alter the flow of execution. It is based on indirect
branches and a dispatcher gadget to steer and chain them together.

A different attack vector targets the data plane, which consists of mem-
ory variables not directly used in control-flow transfer instructions. These
types of attacks, referred to as non-control data attacks [Che+05], do not
require diverting the application’s control flow and can be crafted using a
systematic construction technique known as Data Oriented Programming
(DOP) [Hu+16; Hu+15]. Similar to ROP/JOP, DOP identifies (a) data-
oriented gadgets and (b) gadget dispatchers that chain together previously
identified gadgets in an arbitrary sequence.

Initially, CRAs were based on the principle that gadgets are located at
known addresses in memory. ASLR, however, randomizes the location of
data and code regions every time a process is executed. By randomizing
code, ASLR makes CRAs more difficult to succeed as they cannot locate al-
ready present code, while randomizing data disrupts the redirection of exe-
cution flow as CIAs have far less chances to locate potentially injected code.
However, Shacham et al [Sha+04] proved that due to low entropy, caused
by a small number of bits available for randomization in the 32-bit architec-
ture, a brute-force attack can lead to a memory leak and eventually reveal the
location of the randomized segments.

Furthermore, Snow et al. introduced “Just-In-Time” ROP (JIT-
ROP) [Sno+13], a technique that exploits the ability to repeatedly abuse a
memory disclosure vulnerability to map an application’s memory layout on-
the-fly, thus bypassing ASLR. Next, it identifies and collects gadgets, and
then constructs and delivers a ROP payload based on those gadgets.

Later, Bittau et al. presented a new attack, Blind Return Oriented Pro-
gramming (BROP) [Bit+14]. BROP works against modern 64-bit Linux with
ASLR, NX memory and stack canaries enabled [WC03]. It exploits a single
stack vulnerability and uses two techniques to succeed: (a) generalized stack
reading, which generalizes a known technique used to leak canaries, to also
leak saved return addresses in order to defeat ASLR on x64 even when Posi-
tion Independent Executables (PIE) are used, and (b) remotely finds enough
gadgets to perform the write system call, after which the application’s binary
can be transferred from memory to the attacker’s socket.



2.2. State of the Art 13

2.2 State of the Art

The idea of a gate has been applied before. Multics [Mula] operating system
uses multiple rings of protection [Mulb; Inc83; SS72] that isolate the most-
privileged code from other processes, forming a hierarchical layering. Each
process is associated with multiple rings – domains – so it is necessary to
change the domain of execution of a process. This way the process can access
specific domains only when particular programs are executed. To prevent ar-
bitrary usage, specific “gates” between rings are provided to allow passing
from an outer (less-privileged) to an inner (more-privileged) ring, restricting
access to resources of one layer from programs of another layer. The change
of domain occurs only after the control is transferred to a gate of another do-
main. Switching to a lower ring requires more access rights as opposed to
a higher ring where reduced rights suffice. Downward switching requires
a control transfer to a gate of an inner ring, if the transfer is to be allowed,
whereas an upward domain switch is an unrestricted transfer that can be per-
formed by any process. Nevertheless, the need-to-know principle cannot be
enforced, because if a resource needs to be accessible by a ring a but not from
another b, then a needs to be lower than b. But, in this case every resource in
b is accessible in a.

Over the years, additional important work has been carried out with re-
spect to defenses against CIAs/CRAs, which we classify in three major cat-
egories: (i) randomization, (ii) control and (iii) monitoring. However, ran-
domization mechanisms have two inherent shortcomings: lack of entropy
and information leakage. If the entropy is not high enough, they are vulner-
able to spray-based attacks [DHM08] or brute-force based attacks [Bit+14].
Furthermore, if a memory corruption vulnerability causes information leak-
age, randomization protection can be bypassed by JIT-ROP attacks. Attempts
to counter JIT-ROP attacks have also been bypassed [Dav+15; Con+15]. CFI-
based access control mechanisms depend on two factors to defend against
CRAs: (a) how precise the computed Control Flow Graph (CFG) is and (b)
how precise the checks of the execution flow are. If the CFI implementation
is too coarse (i.e., more permissive CFG) in order to incur lower performance
overhead [Dav+14], it may be circumvented by illegal control transfers. At
the same time, this leads to a decrease in the precision of the checks of the ex-
ecution flow, leaving the implementation vulnerable to CRAs. Finer-grained
solutions (i.e., more strict CFG) suffer from non-negligible performance over-
head and have been proven to be ineffective against CRAs [Eva+15].

2.2.1 Randomization

Under this category fall the mechanisms that propose some kind of random-
ization in their implementation. They can defend against CIAs/CRAs by
rendering the exact location of data/gadgets unpredictable [Lar+14]. These
techniques operate at different levels, depending on their design and in-
tended functionality, namely at the function, basic block, or instruction level.
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Instruction Set Randomization (ISR) [KKP03; Boy+10] is a generic tech-
nique against Code Injection Attacks that is based on diversifying the lan-
guage the execution environment understands to prevent “foreign” code,
which is not expressed in the correct language, from executing. Normally,
a CPU architecture provides a runtime that can execute binaries following
the CPU’s instruction set (x86, ARM, etc.). ISR proposes a runtime that can
understand different randomized languages that an attacker cannot possibly
know, so they are unable to execute their own code. ISR usually relies on
simple cryptographic functions to generate random languages with low per-
formance overhead. On binaries, for instance, a random key (rnd_key) can be
used to randomize every instruction (instr), by employing a simple transfor-
mation like XOR (rnd_key⊕ instr), while the reverse process is applied by the
runtime after fetching bytes to execute and before decoding them to instruc-
tions. The runtime can be implemented directly in hardware [Pap+13], or
in software [PK10] using virtualization. Other implementations use stronger
cryptographic algorithms, like AES [Bar+05], but incur higher performance
overhead and operate on larger code blocks.

Backes and Nürnberger developed Oxymoron [BN14] to counter JIT-ROP
attacks. Oxymoron combines two methods: fine-grained memory random-
ization with the ability to share the entire code among other processes. It uses
the x86 processor’s segmentation feature to disable access to unique indices,
which are organized in a translation table. This level of indirection hides the
target address of a direct branch from a JIT-ROP attacker, making it infeasible
for them to identify the gadgets necessary for the attack.

Venkat, et al. [Ven+16] propose a security defense called HIPStR to thwart
ROP attacks. HIPStR performs dynamic randomization of run-time program
state, both within and across Instruction Set Architectures (ISA). For any pro-
gram in execution, HIPStR dynamically randomizes the location of its pro-
gram state (registers and stack objects) in order to render brute-force attacks
infeasible. Furthermore, HIPStR detects a potential break-in attempt via JIT-
ROP, and when detected, it migrates execution to a different ISA, in order to
limit JIT-ROP attacks.

Chen, et al. [Che+16] developed Remix, a live randomization system for
user-space applications and kernel modules. Remix randomly reorders basic
blocks within their respective functions at undetermined time intervals, to
change the run-time code layout. This way, functions remain at their original,
expected locations, while basic blocks are moved around but never cross the
function boundaries.

Hiser et al. in [His+12] introduce a novel technique called Instruction
Location Randomization (ILR), which randomizes the location of every in-
struction within an binary, with high entropy, thwarting an attacker’s abil-
ity to re-use program functionality. ILR adopts an execution model where
each instruction has an explicitly specified successor. Thus, each instruc-
tion’s successor is independent of its location. This model of execution al-
lows instructions to be randomly scattered throughout the memory space.



2.2. State of the Art 15

Hiding the explicit successor information prevents an attacker from predict-
ing the location of an instruction based on the location of another instruc-
tion. This model is provided through the use of a process-level virtual ma-
chine (PVM) that handles executing the non-sequential, randomized code on
the host machine. This approach, however, depends on disassemblers and
position-independent code for randomization, which makes the amount of
position-dependent code crucial for achieving complete coverage. Also, the
external libraries included in the program are not randomized. Another lim-
itation of ILR is that incorrect branch target analysis during the offline stage,
may result in false positives. Moreover, it requires a database to store the
identified instructions and rewrite rules. Additionally, it suffers from high
performance overhead incurred by the PVM, which determines the next in-
struction to be executed at run-time [YSX16].

Kim, et al. [Kim+15] present a micro-architecture design that can sup-
port native execution of control flow randomized software binary, while at
the same time preserve the performance of instruction fetch and use of on-
chip caches. They use ILR to enhance dependability and security of soft-
ware against code reuse attacks. For that purpose, they propose an approach
named Virtual Control Flow Randomization (VCFR), which introduces an
address space randomization/de-randomization interface before the instruc-
tion fetch requests are handled by the on-chip L1 instruction cache. The con-
trol flow of a binary executable is randomized similar to ILR and presented
to the processor execution pipeline. However, the binary instructions are still
stored in the memory hierarchy (both on-chip caches and off-chip memory)
in the original layout.

[LRL15] presents system call diversification as a method for protecting
operating systems and rendering malicious programs ineffective. The idea
is to change all the system call numbers in the kernel and in the applications
that invoke these system calls. As a result, it becomes much more difficult for
a harmful program to access resources of a computer since the new system
call interface is not known by the malware. However, system calls are rarely
issued directly; applications use libraries to request the system’s resources
making this approach insufficient to provide security.

Habibi et al. in [Hab+15a] introduce a new form of ROP attack applicable
on UAVs, called “stealthy ROP attack”, which first executes the attack pay-
load completely and then reconstructs the ‘smashed’ stack frame before the
final return. This way, the victim application continues executing, giving the
attacker the upper hand when trying to avoid detection. They also introduce
a trampoline technique in this stealth attack that allows the attacker to inject
arbitrarily large payload into the application’s stack. In addition, they pro-
pose a defensive technique – MAVR – to mitigate code-reuse attacks on UAV
systems that combines software and hardware techniques. At software level,
they propose a fine-grained randomization-based approach that modifies the
layout of the executable code and hinders code-reuse attacks. Moreover, the
mitigation technique aims at breaking critical factors that are required for this
type of attacks, leveraging a specialized hardware design.

Kumar and Kisore [KK14] propose a technique called Function Frame
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Runtime Randomization (FFRR). FFRR offers memory layout randomiza-
tion at runtime and performs randomization at the granularity of individual
variables on the stack. Their approach makes the memory location of the
program objects on the stack unpredictable, by randomizing the relative dis-
tance between any two objects on the stack at runtime. The basic idea is that
random variables are introduced, as many as the number of local variables
declared in a function. These random values are used to add a random num-
ber of words before the local variables are pushed on to the stack function
frame at runtime. The random numbers can be generated using a compu-
tationally inexpensive technique like Linear Feedback Shift Register (LFSR)
during the function frame setup phase.

Kanter and Taylor in [KT13] explore compiler and linker based ap-
proaches to increase attacker workload by generating diversity in the binary
code associated with a single source, measured by entropy. This is achieved
by injecting randomness into the binary image. By inserting code at the start
of every logical block and randomizing function layout, it is possible to inject
a quantifiable level of entropy based on the source parameters of number of
functions, function size, and blocks per function.

Stanley et al. [SXS13] built a technique based on reordering memory lay-
outs. They describe two different ways to mutate an operating system ker-
nel using memory layout randomization to resist kernel-based attacks. They
introduce method for randomizing the stack layout of function arguments.
Additionally, they refine a previous technique for record layout randomiza-
tion by introducing a static analysis technique for determining the random-
izability of a record. Their design has three distinct but related parts: Record
Field Order Randomization (RFOR), RFOR suitability analysis, and Subrou-
tine Argument Order Randomization (SAOR). RFOR occurs at compile-time,
during which the field order of the record definition is randomized. SAOR
also occurs at compile-time, during which the argument order for each defi-
nition of, type of, and call to a given subroutine are randomized.

In [Hom+13] Homescu et al. use profile-guided optimization to reduce
the performance overhead of software diversity against code-reuse attacks.
Their primary insight is to diversify cold code, but restrict diversification ef-
forts in hot code (code where a program spends most of its execution time).
More specifically, they focus on NOP insertion, to randomize the code lay-
out of a program. At each program instruction, they randomly decide to
prepend a NOP or not. In case a NOP is inserted, it is chosen at random
from a list of NOP candidates. Furthermore, they implement a form of au-
tomated software diversification [Hom+15] as a means to thwart code reuse
attacks, namely ROP and JOP. They implement compiler-based diversity by
extending the LLVM compiler infrastructure, thus enabling automated di-
versification for all languages supported by the LLVM front-end. They use
two main transformations in their design. First, they insert a series of NOP
instructions, carefully selected to preserve the processor state at all times and
to minimize the likelihood of creating new gadgets. Second, they randomly
rearrange the order of instructions (instruction scheduling).
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Pomonis et al., in [Pom+17], present a kernel hardening solution that di-
versifies the kernel’s code and prevents any memory read accesses to it. They
achieve this by applying code instrumentation to prevent memory reads
from code sections, as well as by coupling execute-only memory with ex-
tensive code diversification (function and basic block reordering) and return
address protection (XOR-based encryption or decoy return addresses). Ex-
tending the isolation mechanism of kRX on x86-64 systems, they also propose
kSplitStack [Pom20] which leverages a multi-stack scheme where functions
use an unprotected stack for their local variables, but switch to a protected
one when pushing or popping return addresses, protecting this way the se-
crecy and integrity of control data.

In [Jel+21], the authors present Mardu, an on-demand system-wide run-
time re-randomization technique capable of scalable protection of applica-
tion as well as shared library code. They also achieve code sharing with
diversification by implementing reactive and scalable, rather than continu-
ous or one-time diversification. Mardu relies on an event trigger design and
acts on permissions violations of Intel’s Memory Protection Keys (MPK). It
leverages immutable trampolines which, while not re-randomized, they are
protected from read access and decouple function entry points from function
bodies, obstructing attackers from inferring and obtaining ROP gadgets.

2.2.2 Control

Mechanisms that control the flow of execution of a program compose this
category, which is further divided into two subcategories, namely (i) access
and (ii) behavior, based on their implementation.

Access

In [Pro03], Provos developed systrace(8), a system that supports fine-
grained policy generation. It guards the calls to the operating system at the
lowest level, enforcing policies that restrict the actions an attacker can take
to compromise a system. However, a high-level intent would be lost in a
multitude of low-level calls. For example, when the mktemp(3) function gen-
erates a unique temporary file, it first checks if a file name already exists. If
not, then it creates and opens the file with the specific name. During this
sequence of events, several system calls (stat(2), open(2), mkdir(2), etc)
are being made. To prevent arbitrary usage of these functions (e.g., during a
race between testing whether the name exists and opening the file, when an
attacker can create a symbolic link to an inaccessible file and have access to
it from a privileged program), the system calls would need to be examined
and policies enforced under a finer-grained framework, like systrace(8)).
However, this kind of framework would need to check these calls that result
in a number of lower-level calls to the operating system. Since only the high-
level calls are of importance in this case, the examination of underlying calls
would be not only unnecessary, but undesired too. The fine-grain control
offered by the framework, while checking calls required by system or user
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level libraries when implementing complex operations, is overly verbose.
Additionally, it may leave a library in an inconsistent state if the sequence
of these calls is interrupted in the middle of execution by a misconfigura-
tion [KP06]. Furthermore, for applications that use high-level abstractions
away from low-level system calls, there may be difficulties generating pre-
cise policies. Later research [Wat07] showed that concurrency vulnerabilities
were discovered that gave an attacker the ability to construct a race between
the engine and a malicious processes to bypass protections. More specifically,
in a multiprocessor environment, the arguments of a system call were stored
by a process in shared memory. After systrace(8) performed the check and
permitted the call, another malicious process had a time window to replace
the cleared arguments in shared memory, effectively negating the presence
of systrace(8) and evading its restrictions. In a uniprocessor environment,
this could be achieved by forcing a page fault or in-kernel blocking, so the
kernel would yield to the attacking user process.

Kim et al. in Access Controls For Libraries and Modules (SecMod-
ule) [KP06], force user-level code to perform library calls only via a library
policy enforcement engine providing mandatory policy checks over not just
system calls, as in the case of systrace(8), but calls to user-level libraries as
well. The access rights in question would be whether a process (which may
be malicious) is allowed to execute some function held securely in a library
module. This framework retrofits functions in order to be included in a se-
cure “enclosure” (SecModule). The kernel has a list of all the SecModules
and when a process asks for access to a secured function, the kernel verifies
that the requested SecModule is registered and that the process is valid with
respect to its policy. Then, it allows that and only that process to use only the
specific function. This means that access to a specific function or procedure
is controlled by the kernel. While this is particularly suited to SecModule-
enabled applications, the overhead of two context switches per function in-
vocation (once to transfer control to the kernel and – when it reaches a deci-
sion - once more to transfer control back to the caller), makes the technique
quite expensive for more general use. One of the issues identified by the au-
thors of the SecModule paper is the difficulty in encapsulating library mod-
ules. This manual process is error prone and extremely labor intensive, since
most of the applications compiled within the framework required patching.
Another issue is the inability to evaluate call arguments. Although they are
contained in a known structure pointed to by a stack pointer, their exam-
ination requires lots of casting in the C++ functions, which in turn needs
additional information for these functions held in the module.

Abadi et al. propose CFI [Aba+05] which enforces the execution of a pro-
gram to adhere to a CFG, which is statically computed at compile time. If the
flow of execution does not follow the predetermined CFG, an attack is de-
tected. This approach, however, suffers from two main disadvantages. First,
the implementation is coarse-grained. Computing a complete and accurate
CFG is difficult since there are many indirect control flow transfers (jumps,
returns, etc.) or libraries dynamically linked at run-time. Furthermore, the
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interception and checking of all the control transfers incur substantial perfor-
mance overhead.

In [Kay+12] Kayaalp et al. propose Branch Regulation (BR), a hardware-
supported protection mechanism against CRAs that addresses all limitations
of software CFI, including potential vulnerabilities due to the presence of
unintended branch instructions in certain architectures. BR enforces simple
rules in hardware to limit control flow transfers to an address within the same
function, or to an entry point to a new function, or to a return address gener-
ated by a legitimate prior call, disallowing arbitrary transfers from one func-
tion into the middle of another. However, it annotates the binary, resulting in
increased code size. In addition, the implementation of CFI is coarse-grained
allowing the program flow to be transferred to any function entry point or
any point within the current function. Although the mechanism makes use of
a shadow stack to keep track of the return addresses, the shadow stack itself
is not secure since it resides in mapped memory. Moreover, when an indi-
rect jump is performed (e.g longjmp()) it may transfer the control flow in the
middle of a function, which is disallowed from this scheme, thus throwing a
false-positive exception.

Das et al. [DZL16] in their work present an approach to enforce fine-
grained CFI at a basic block level, named Basic Block CFI (BB-CFI), which
aims to defend against stack smashing and code reuse attacks. The key idea
is to verify the target address (TA) of control flow instructions (CFINs), which
may be modified by the adversary. BB-CFI contains two stages: 1) offline pro-
filing of the program – to extract the control flow information and 2) runtime
control flow checking – to verify the TA of CFINs using the extracted infor-
mation. Additionally, they propose an architectural design of control flow
checker (CFC), which monitors the program execution during runtime to en-
force BB-CFI, offering an implementation of it on an FPGA.

In [KRK16], Kanuparthi et al. propose Dynamic Sequence Checker (DSC),
a framework to verify the validity of control flow between basic blocks in the
program, which works in tandem with a dynamic integrity checker to pro-
vide control flow integrity. Unique codes are assigned to every basic block
in the program at compile time in such a way that the Hamming distance
between two legally connected basic blocks is a known constant. At runtime,
the Hamming distance between the codes assigned to the source and desti-
nation basic blocks is calculated and compared against the known constant,
to verify the control flow. Execution is aborted if the Hamming distance com-
parison does not match.

Niu and Tan [NT14a] present Modular Control-Flow Integrity (MCFI),
a CFI technique that supports separate compilation. In MCFI, an applica-
tion is divided into multiple modules. Each module contains code, data and
other information that help its linking with other modules and the genera-
tion of the module’s CFG. Code of a module is instrumented separately for
CFI. When modules are linked either statically or dynamically, their auxil-
iary information is combined and used to generate a new CFG, which is the
new control-flow policy for the combined module after linking. The new
policy may allow an indirect branch to target more destinations. The CFG is
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represented in a run-time data structure and the reads and updates of it are
wrapped in transactions to ensure thread safety. The authors leverage MCFI
in order to build RockJIT [NT14b]. RockJIT secures Just-In-Time (JIT) com-
pilers through CFI by enforcing fine-grained CFI on the JIT compiler, while
dynamically updating the control-flow policy when new code is generated
on-the-fly and coarse-grained CFI on the JITed code, resulting in improved
security. Based on MCFI and RockJIT, they also present Per-Input Control-
Flow Integrity (PICFI or πCFI) [NT15] that can enforce a CFG computed
for each concrete input (which may include unnecessary edges in the CFG).
πCFI starts executing a program with an empty CFG and lets the program
itself add edges to the enforced CFG, if such edges are required for the con-
crete input. To prevent attackers from arbitrarily adding edges, πCFI uses
a statically computed all-input CFG to constrain what edges can be added
at runtime. During execution, πCFI dynamically activates target addresses
lazily before the addresses are needed by later execution.

In [GEN15], Gionta et al. present a system - HideM - for protecting against
memory disclosures in modern commodity systems. It uses the split-TLB ar-
chitecture, to enable fine-grained execute-and-read permissions on memory.
HideM uses code reading policies to divide read data from executable data
(e.g., machine code) on executable pages. Shadow memory pages are cre-
ated containing only the required readable or executable data. The OS kernel
configures the hardware split-TLB to hide executable data from userspace
read access. As a result, HideM can apply code reading policies and enforce
fine-grained permissions to commercial off-the-shelf (COTS) binaries.

Evans et al. in [Eva+15], present an attack to show that, for architectures
that do not support segmentation in which Code Pointer Integrity (CPI) relies
on information hiding, CPI’s safe region can be leaked and then maliciously
modified by using data pointer overwrites. CPI protects access to code point-
ers by storing them in a safe region that is protected by instruction level isola-
tion. On x86-32, this isolation is enforced by hardware; on x86-64 and ARM,
isolation is enforced by information hiding. They focus on the latter architec-
tures and show that the use of information hiding to protect the safe region is
problematic and can be used to violate the security of CPI. Specifically, they
show how a data pointer overwrite attack can be used to launch a timing
side-channel attack that discloses the location of the safe region on x86-64.

Backes et al. [Bac+14] propose an approach to thwart the root cause of
memory disclosure exploits, by preventing the inadvertent reading of code
while the code itself can still be executed. They introduce a new primitive
called Execute-no-Read (XnR) which ensures that code can still be executed
by the processor, but at the same time it cannot be read as data. In this
way they prevent JIT-ROP attacks, since they require a disclosure vulnera-
bility that enables an adversary to read arbitrary memory locations, which
allows searching for gadgets. Forbidding code from being read and hence
disassembled, prohibits an attacker from constructing a gadget chain on-the-
fly. Consequently, XnR requires OS/MMU modifications, because of the way
modern architectures (x86, ARM) are designed.
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In [Zha+13] Zhang et al. discuss several representative defense mecha-
nisms against function pointer exploitation. Based on them, they propose
Function Pointer Gate (FPGate), a method that rewrites x86 binary executa-
bles and implements a method to overcome compatibility issues with the
existing development process. FPGate utilizes relocation tables already re-
quired by ASLR in modern x86 binary executables, to disassemble binaries
and identify all indirect control transfer instructions and all their valid tar-
gets. Furthermore, it encodes each valid function pointer into a pointer to
a new trampoline memory section, thus enabling modules hardened by FP-
Gate to inter-operate seamlessly with unhardened ones.

In [Lin+21], Lin et al. propose an address-based CRA mitigation tech-
nique for shared objects at the binary-level. They set several principles that
must be followed by the execution of indirect branch instructions. More
specifically, they reconstruct function boundaries at the program’s dynamic-
linking stage by combining shared object’s dynamic symbols with binary-
level instruction analysis. They also leverage static instrumentation to hook
vulnerable indirect branch instructions to their proposed target address com-
putation and validation routine. This results, at runtime, in protection
against CRAs based on the computed target address.

In [BR21], Bauer and Rossow present a compiler-assisted library isola-
tion system (CALI) that shields a program from a given library, using shared
memory to allow secure interactions between a program and its libraries.
They compartmentalize libraries into their own process and use a Program
Dependence Graph (PDG) to observe and propagate data flows crossing the
security contexts, in order to preserve the functionality of the interactions be-
tween program and library. They then place the according memory regions
in shared memory, and isolate the remaining memory in the application and
library processes, respectively.

Behavior

The DisARM defense technique [Hab+15b] protects against both code-
injection and code-reuse based buffer overflow attacks by breaking the ability
of attackers to manipulate the return address of a function. DisARM uses a
fine-grained analysis of the binary to find all critical interactions that manip-
ulate the hardware Program Counter (PC) and verifies any change to the PC
before it is applied. For each such critical instruction, a verification block is
inserted immediately before the instruction in order to evaluate whether the
target address is valid with respect to the current instruction the program is
executing.

Kanuparthi et al. [Kan+12] propose a hardware-based dynamic integrity
checking approach that does not stall the processor pipeline. It permits the
instructions to commit before the integrity check is complete, and allows
them to make changes to the register file, but not the data cache. The changes
made by the instructions are held in the store buffer or in a shadow register
file until the check is complete. Then, the values are accordingly written to
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the L1 data cache or the original register file. The system is rolled back to a
known state, if the checker deems the instructions as modified.

Kayaalp et al. [Kay+15] examine a signature-based detection of code
CRAs, where the attack is detected by observing the behavior of programs
and detecting the gadget execution patterns. They demonstrate a new attack
that renders previously proposed signature-based approaches ineffective by
introducing delay gadgets. Delay gadgets have a single purpose of obfuscat-
ing the execution patterns of the attack without performing any useful com-
putation. They develop a complete working JOP attack that incorporates
delay gadgets. Then, they propose and develop the Signature-based CRA
Protection (SCRAP) hardware-based architecture for detecting such stealth
JOP attacks. SCRAP recognizes the formal grammar that expresses the at-
tack signatures or the patterns of executed instructions that are indicative of
a JOP attack, which are significantly different from those of the regular pro-
grams as they execute frequent indirect jump (or call) instructions to jump
from gadget to gadget.

2.2.3 Monitoring

This category consists of techniques that observe the flow of execution of a
program, stepping in to take action whenever it is deemed necessary. The
monitoring can be inline or parallel to the execution.

Inline

Tian et al. [Tia+14] propose PHUKO, an on-the-fly buffer overflow preven-
tion system which leverages virtualization technology. This system offers
the monitored program a fully transparent environment and easy deploy-
ment without restarting the program. PHUKO combines static analysis and
online patching provided by the hypervisor to instrument buffer accesses in
the running program. Specifically, it first uses static binary analysis to iden-
tify the interesting instructions that are related to buffer overflows and then
it replaces them with trap instructions by which the execution of a program
will be trapped to the hypervisor. Then, when the monitored program ex-
ecutes these replaced instructions, the built-in bounds checking mechanism
will dynamically take effect to ensure that the buffer access is limited within
the scope of the allowed memory area.

Crane et al. [Cra+13] identify the technique of booby trapping software.
They define booby traps as code providing active defense that is only trig-
gered by an attack. These booby traps do not implement program function-
ality and do not influence its operation - in fact, the program does not know
about its own booby traps and under normal operation cannot trigger them.
They propose to automatically insert booby traps into the original program
code during compilation or program loading. Whenever an attack triggers
one of the booby traps within the program, the trap instantly knows that an
attack is underway and is in a position to react to the threat.
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Chen et al. [Che+13] propose a kernel-based security testing tool, named
ARMORY, for software engineers to detect Program Buffer Overflow Defects
(PBODs) automatically when applying testing, without increasing the testing
workload. Whenever a developer provides an input string to a program to
test its functionality, ARMORY automatically forks a child process, called
PBOD test process, and utilizes it to test whether the code used to handle
the input string has any PBOD. The parent and the child processes work
independently; thus, they do not influence each other. The original process
only handles the original input string to test the functionality.

Zhang et al. [Zha+21] present Punchcard, a system that isolates memory
objects by placing red-zones between them to ensure spatial memory safety,
and to prevent the reuse of deallocated objects by replacing them with red-
zones to ensure temporal memory safety. They implement it by extending
the page permission checker inside the MMU, in order to store the red-zone
metadata within the physical frame number of an address. Additionally, they
perform memory access validation and upon an access violation, the Punch-
card checker raises a privilege exception which is handled by a custom OS
handler.

Parallel

Liu et al. [Liu+14] present a hardware framework for providing detection
and prevention of code injection attacks using a lockstep diversified shadow
execution. Their goal is to enrich the diversity of software execution with the
facilitation from programmable hardware decoder and novel CPU support
of a tightly coupled shadow thread technique. Specifically, given a piece of
(legacy) binary code, firstly diversified binary versions are generated using
an offline binary rewriter and programmable hardware binary translator at
runtime. Two diversified binary code images are launched as dual simulta-
neous threads in the hardware layer with one as the primary thread and the
other one as shadow thread. Instructions from the shadow thread are not ex-
ecuted but just compared. The extended CPU is able to decode instructions
from both threads, and dispatch them to the next stage pipeline for a lockstep
comparison. Any mismatch of the decoded instructions from the two threads
caused by remotely injected binary code, will be detected and flagged by the
hardware as an intrusion.

Volckaert et al. [VCS16] present Disjoint Code Layouts (DCL), a technique
that complements multi-variant execution and DEP protection to immunize
programs against control flow hijacking exploits such as ROP and return-to-
libc attacks. This technique relies on the execution and replication of multiple
runtime variants of the same application under the control of a monitor, with
the guarantee that no code segments in the variants’ address spaces overlap.
Lacking overlapping code segments, no code gadgets co-exist in the different
variants to be executed during ROP attacks. Hence no ROP attack can alter
the behavior of all variants in the same way. By monitoring the I/O of the
variants and halting their execution when any divergent I/O operation is
requested, the monitor blocks any ROP attack before it can cause harm.
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Zeng et al. [ZZL15] propose HeapTherapy, a solution against heap buffer
overflows that integrates exploit detection, defense generation and overflow
prevention in a single system. During program execution it conducts on-the-
fly trace collection and exploit detection and initiates automated diagnosis
upon detection to generate defenses in real-time. It handles both over-write
and over-read attacks. It employs techniques to identify vulnerable heap
buffers based on the intrinsic characteristics of an exploit, as opposed to fil-
tering out malicious inputs based on signatures.

2.2.4 Hardware approaches

SMEP/SMAP

Recent CPU architectures introduce hardware features that help prevent ar-
bitrary code execution from kernel space, when the kernel tries to access
unintended user-space memory. Supervisor Memory Execute Protection
(SMEP) [Fis11] and Supervisor Memory Access Protection (SMAP) [Mul15]
leverage the User/Supervisor (U/S) bit in page table entries that desig-
nates where a page belongs to (user-space application or OS kernel). SMEP
prevents supervisor mode from unintentionally executing user-space code.
SMAP is designed to complement SMEP and extends the “execute” protec-
tion to “read” and “write” attempts. However, Gruss et al. [Gru+16] in-
troduced Prefetch Side-Channel Attacks that allow unprivileged attackers
to obtain address information and thus compromise the entire system by
defeating SMEP and SMAP and proposed a strong kernel isolation to pro-
tect commodity systems. Additionally, Google’s Project Zero released an
exploit [Kon17] using a vulnerable kernel function to disable SMEP/SMAP
protection, which was later rectified [Lar19].

Trusted Execution Environment

A Trusted Execution Environment (TEE) [All18] is another hardware feature
that offers a secure, integrity-protected processing environment, consisting of
memory and storage capabilities [Aso+14]. It establishes an isolated execu-
tion environment that runs parallel to a standard OS and it protects sensitive
code and data from privileged attacks without compromising the native OS.
It prevents unauthorized access or modification of executing code and data
while they are in use, so that the applications running the code can have high
levels of trust in the TEE, because they can ignore threats from the rest of the
system.

Major hardware vendors have already included this feature into their
products. Intel’s Software Guard Extensions (SGX) [Ana+13; McK+13;
Hoe15; McK+16] helps encrypt a portion of memory. This portion - enclave - is
used by the OS/applications to define private regions of code and data that
cannot be accessed by any (potentially running at a higher privilege level)
process outside the enclave, thus preserving the confidentiality and integrity
of sensitive code and data. However, several attacks have been developed
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that brake the security of SGX. In [Sch+17], Schwarz et al. were able to ex-
tract a full RSA private key by performing a cache side-channel attack on
a co-located SGX enclave. Later on, countermeasures were released against
this attack [Gru+17; Bra+17]. Additionally, the Spectre attack [Koc+19] was
adapted to target SGX enclaves [O’K+15]. Similarly, the Foreshadow attack
exploits speculative execution (e.g., Spectre) in order to read the contents of
SGX-protected memory [VB+18]. Moreover, it has been proven that a ROP
attack can be constructed and launched all from within an enclave [Lee+17;
SWG19]. However, a defense against this attack vector was later presented
in [Wei+19]. More recently, two more attacks have been introduced: (a)
Plundervolt [Mur+20] that can break cryptography (RSA and AES) and in-
ject controlled memory-safety bugs into secure code, so as to redirect en-
clave secrets to be written to untrusted memory outside the enclave and (b)
SmashEx [Cui+21] which demonstrates that, in the absence of safe atomic
execution, asynchronous exception handling in SGX enclaves is prone to re-
entrancy vulnerabilities that can be exploited to cause arbitrary disclosure of
enclave private memory and ROP attacks in the enclave. In light of these
several security vulnerabilities, SGX has been shown to be insecure, leading
Intel to discontinue the feature in its most recent processor families [Int21;
Int22].

Another major hardware vendor - ARM - specializing in mobile envi-
ronments and embedded devices has developed its own TEE. ARM’s Trust-
Zone [ARM09] has been employed in industrial control systems [Fit+15],
servers [Hua+17], and low-end devices [Aso+18]. However, similarly to
SGX, over the years there have been several security vulnerabilities uncov-
ered and disclosed [Cer+20], in this case as well. Recently, the CLKSCREW
fault attack [TSS17] was developed, which overclocks the CPU to gener-
ate hardware faults in order a malicious kernel driver extract secret cryp-
tographic keys from TrustZone, and escalate its privileges by loading self-
signed code into TrustZone. Even more recently, VoltJockey [Qiu+19] was
released, a software-controlled hardware fault-based attack that manipu-
lates the voltages of the CPU in order to reveal an AES encryption key
from TrustZone and breach the RSA-based TrustZone authentication. Lately,
in [SBYZ21], the authors present a Direct Memory Access (DMA) attack that
allows an attacker to execute arbitrary code in the secure world or read arbi-
trary data from the secure world, and exploit a hardware vulnerability that
compromises TrustZone, in order to replace trusted applications with mali-
cious ones.

2.2.5 Shadow stacks

An extra layer that is employed in conjunction with some security mech-
anism, in order to further strengthen execution, is a shadow stack [CH01;
Ven00]. The original idea behind shadow stacks is that when a function is
called, the return address of that call is stored in a separate protected mem-
ory region - the shadow stack - where an attacker cannot have access. When
the function returns, the saved return address is either compared against the
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program’s return address on the main stack, or it is placed directly on the
main stack overwriting the return address.

There are two categories of shadow stacks, based on their design: (a)
parallel [DMW15] and (b) compact [BZP18]. A parallel shadow stack is a
copy of the main stack and its position is determined based on the position
of the main stack. This design allows for quick mapping of return addresses,
however it requires twice the memory size. Compact shadow stacks utilize
a separate pointer to hold the position of the return address in the shadow
stack (e.g., in a register), while their position is irrelevant to the main stack’s.
In this case the overhead is increased due to the extra pointer, however mem-
ory usage is not as high as in the case of a parallel stack because the return
addresses are stored one after the other.

Furthermore, shadow stacks can be (a) hardware-assisted [Fra+18;
MRD18] which leverage hardware features (e.g., Intel Control Enforcement
Technology (CET) [Cor19]) to provide shadow stack support, or (b) software-
only implementations that ensure the shadow stack’s integrity [Kuz+14;
Lu+15; Wah+93b].

2.3 Summary

Over the past several years, significant developments have been made in
research concerning attacks and defenses related to software systems. In Sec-
tion 2.1, we present the timeline that led to the introduction of CRAs. Ad-
ditionally, in Section 2.2, we present an overview of the latest efforts to de-
velop the equivalent techniques (that mainly relate to the work of the thesis)
to counter CRAs. We classify them in three major categories: randomiza-
tion, execution control and execution monitoring. Within each group, we try
to cover the most relevant efforts to our proposed solutions. Lastly, in Sec-
tions 2.2.4 and 2.2.5, we list two complimentary categories that are used to
secure a software system - hardware approaches and shadow stacks.
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3
Design Considerations

This Chapter deals with the design of our framework. In Section 3.1, we
present the basic idea of how we conceive memory segmentation and ex-
ecution flow redirection. Sections 3.2 and 3.3 detail the assumptions under
which we operate with regards to the threats the underlying system may face
and the security measures already in place to thwart them, respectively. In
addition, in Section 3.4 we present the hardware and software setup which
is used to support the development and testing of the security layer. Finally,
in Section 3.5 we offer some insight on the use-cases we employ through-
out the development of the framework, in order prove its applicability and
efficiency.

3.1 Architectural Approach

As it stands, when a program is running, the execution flow can move any-
where within the process’s memory area (e.g., libraries, main executable,
etc.). Originally, the application and library code share their stack and
heap spaces (Figure 3.1), which provides a breeding ground for interfering
with the execution of library code. Under specific circumstances and using
specially-crafted attack vectors (e.g., ROP, JOP, etc.), an adversary can mis-
lead the CPU to execute code that is already present in the process’s memory
area, although its execution is not intended by the application designer. For
example, when executing a ROP attack, the adversary chains together dif-
ferent sets of instruction sequences ending in ret (Figure 3.2). These code
snippets - gadgets - have been proven to be frequent in libraries and Turing-
complete [Sha07].

Under our approach, all calls are intercepted at a double level. On one
hand, at the user level, a custom library wrapper intervenes before a library
call reaches its destination (Figure 3.3) (see Section 4). There, we have a
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FIGURE 3.1: Current memory layout of a process

chance to analyze the arguments of the call. Moreover, we can apply se-
curity policies before allowing the call to move ahead. By doing this, we
can detect any deviations from a predefined behavioral profile of the ap-
plication under test. At this level, however, the wrapper can be bypassed
since it resides in user land. Both variants of the default randomization tech-
nique (32/64-bit ASLR) were bypassed several years ago [Sha+04; MGR14;
EPAG16], although stronger protections have been introduced [MGRR19].
Consequently, a tech-savvy attacker can find out the address of the original
library and call the destination function directly, without going through the
wrapper. Nevertheless, we point out that this level of interception is primar-
ily used for educational/training purposes. A user (system administrator,
security analyst/engineer, student, etc.) can leverage this mechanism in or-
der to gain insight on how the inner workings of a library are carried out, in
both cases (i) under normal execution and (ii) when under attack. In a sus-
picious event, they can then use this knowledge to infer if it is malicious or
not (e.g., when performing forensic analysis). Moreover, by redirecting the
execution flow through our wrapper in an isolated environment (in order
to ensure nominal conditions), our mechanism can operate in learning mode.
This way, crucial information about how the library should behave in normal
circumstances can be extracted. This information can, then, help create more
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FIGURE 3.2: ROP sequence

FIGURE 3.3: Library wrappers
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FIGURE 3.4: Memory segmentation and access control

comprehensive and complete security policies.
On the other hand, the kernel intercepts and redirects all calls through a

custom library - a gate. Currently, inter-library function calls are performed
directly from shared library to shared library (Figure 3.1). In our approach,
we map the aforementioned gate in the process’s memory area, but before
doing so, first we separate all libraries as well as the main executable in
order to form standalone partitions that can communicate with each other
(Figure 3.4). Each partition is equipped with its own gate. Communication
within a specific partition is performed normally, without any restrictions
(C() → D()). However, calls from one partition to another are not per-
mitted directly, but only after being passed through the gate by the kernel
(A() → C()). At this level, in contrast to the user-side interception, the kernel
takes over the execution and redirects all calls through the respective policy
enforcement engine (essentially the associated gate), leaving no way for an
attacker to bypass it. A more detailed and technical view for this follows, in
Section 5.

3.2 Adversary Model

Throughout the thesis, we assume a powerful yet reasonable threat model
that is consistent with the equivalent models used in the state-of-the-art.
The work described here is concerned with control-flow hijacking attacks,
the purpose of which is to divert the control flow to a point that would
not otherwise be reachable in that same context, had the execution not been
maliciously altered. The attacker has full control over data and heap/stack



3.2. Adversary Model 31

memory regions, which is in-line with published CRAs that exploit mem-
ory bugs in order to mislead the CPU to unintentionally execute arbitrary
code. Additionally, the attacker cannot modify the code segment, because the
corresponding pages are marked executable and not writable. More specifi-
cally, we consider an adversary model which is composed of three classes of
threats, against which our approach can defend.

The bugs/vulnerabilities that can be found in an application and ex-
ploited comprise the first class. These can be either (a) already discovered
and known without, however, a security patch being available or having
being applied by the system administrator or (b) zero-day/undiscovered,
without anyone knowing about their presence. Coding errors that lead to
memory corruption vulnerabilities remain one of the most common and dan-
gerous weaknesses in modern software [Tea22; Vij21]. Very common among
such vulnerabilities are: (i) buffer overflow and (ii) dangling pointer (use-
after-free).

Buffer overflows are one of the most widespread memory corruption
classes and are usually caused by a coding mistake/oversight. They
happen when the length of user-supplied data is not properly checked
by a program. When the program attempts to store more data in a
buffer than it can hold, this can result into writing past (overflowing)
the buffer. In this case, the buffer is a sequential section of allocated
memory space. Writing outside the bounds of a block of allocated mem-
ory can corrupt neighboring data, crash the program, or cause the ex-
ecution of malicious code. These bugs can be exploited by powerful
methods that take advantage of the way data is laid out on the heap or
stack (heap/stack smashing) or of the unexpected results of arithmetic
operations (e.g. integer overflow) among other approaches.

Dangling pointers point to a memory region that has been freed and is no
longer valid. They are the cause of the use-after-free exploit, where an
object or structure in memory is deallocated (freed) but still used. An
object is created and the attacker triggers a “free” operation on it. Then,
they create an arbitrary, fake object as closely similar as possible, to the
first. Later, when the program tries to use the original object, the fake
one is used instead leading to arbitrary code execution.

These vulnerabilities do not lead directly to privilege escalation. In that case,
a CRA would not be necessary, as the adversary - having sufficient privileges
- could circumvent any defense in place. The attacker, however, may seek to
achieve privilege escalation indirectly, by mounting a CRA that exploits the
bugs in question.

Secondly, the attacker knows the binary executable of the process and the
OS version of the system under attack. Hence, they can precompute potential
gadget chains in advance. Based on the attacks and approaches described in
Section 2, the adversary is in possession of a technique (e.g. BROP, JIT-ROP,
etc.) that can exploit the aforementioned vulnerabilities and can mount an
attack that eventually compromises an application.
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Lastly, the third threat class is the behavior of a program. At run-time, an
application can present abnormal behavior that opposes what is nominally
expected. If we see - for example - that a program is trying to make multiple
socket connections to a remote host (despite the fact that during its normal
execution it only makes one such connection e.g., to upload/exchange some
data), this change in behavior will be considered suspicious and flagged as
such.

3.3 Security Assumptions

Modern Linux environments have incorporated several defenses over the
years to counter attacks against the system. Here, we make the following as-
sumptions about the underlying system, in accordance with these by-default
enabled/widely used approaches:

ASLR is enabled, which randomizes the location of data and code regions
every time a process is executed, in order to defend against code reuse ex-
ploits.

CFI or a similar variant can be used against code reuse attacks as well,
which enforces the execution of a program to adhere to a pre-calculated con-
trol flow graph.

W
⊕

X / NX-bit is enabled, which prevents memory pages from being
writable and executable at the same time, defending against code injection
attacks.

Stack canaries / -fstack-protector / -fsanitize flags are used to protect
from buffer overflows.

The hardware is considered not flawed and the OS kernel trusted and se-
cure.

The security policies to be enforced by our mechanism are ideally pro-
vided by the application/library designers and are considered to be com-
plete and correct. As mentioned in Section 1.1.2, the policy generation needs
to be done in a careful way. The designer/programmer needs to ensure that
all code is tested, so it is important to provide a sufficient testing method-
ology that can cover the software in its entirety. All code regions must be
comprehensively tested, in order to create a complete profile of the appli-
cation behavior. However, this is out of the scope of this thesis, since we
assume that we receive such a profile ready to be enforced. That being said,
in Section 4.3 we present our approach in producing the application behav-
ior profile, which was used for testing purposes throughout development.
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A system administrator can follow this approach, which however will im-
pact the completeness and correctness of the respective policy. Furthermore,
the policies cannot be tampered with by an adversary (e.g., they are digitally
signed).

A user-space application (APP) has been tested, but not guaranteed to
be free from programming errors that might reveal memory corruption /
control-flow hijacking vulnerabilities. These can be repeatedly exploited by
an attacker, giving them the ability to bypass the default security measures in
place. However, the attacker cannot obtain root privileges (i.e., cannot access
the kernel or disable / circumvent any defense mechanisms in this way).

Other attack vectors such as side-channel attacks / speculative execution
/ microarchitectural leaks, although important, are considered out of scope.

3.4 Testbed

Throughout the duration of the design and implementation of the prototype,
the following hardware and software setup was used, as can be seen in Fig-
ure 3.5. This is reported from the Phoronix Test Suite (PTS) benchmark appli-
cation [Pts] and is based on Linux kernel version 4.16.7, the latest one when
the implementation phase started.

FIGURE 3.5: System configuration
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3.5 Use-Cases

In order to evaluate the applicability and efficiency of our prototype, we used
two main test cases during the course of development: (a) a ChaCha20-
Poly1305 cipher vulnerability and (b) an NGINX HTTP Server vulnerabil-
ity. Although these vulnerabilities are several years old and were subse-
quently addressed after discovery, we use them as prime examples of what
our framework can achieve in real-life situations that affect the availability
and security of a production system. These two use-cases are in-line with the
adversary model presented in Section 3.2. More specifically, they are repre-
sentative examples of buffer overflow vulnerabilities that lead to interference
with the heap or stack. They are adequately generic in order to cover a wide
range of similar use-cases. Additionally, they are comprehensive enough to
show the efficiency and complete functionality of our approach. We argue
that, for these reasons, the two scenarios that we detail next are sufficient
and there would be no reason to include more, as the results from our mech-
anism would be equivalent.

3.5.1 ChaCha20-Poly1305 heap-based buffer overflow

CVE-2016-7054 [CVE16b; CVE16a] is a heap-based buffer overflow vulner-
ability related to TLS connections using *-CHACHA20-POLY1305 cipher
suites. It was discovered on September 2016 and characterized as highly
severe. Servers implementing versions 1.1.0a or 1.1.0b of OpenSSL, can crash
when using the ChaCha20-Poly1305 cipher suite to decrypt large payloads
of application data, making them vulnerable to DoS attacks. It is triggered
by an error during the verification of the MAC. If it fails, the buffer on which
the decrypted ciphertext is stored, is cleared by zeroing out its content via
the memset function. However, the pointer to the buffer that is passed to the
function points to the end of the buffer instead of the beginning. If the pay-
load to be cleared is large enough, the contents of the heap will be erased,
resulting in a crash when OpenSSL frees the buffer.

3.5.2 NGINX stack-based buffer overflow

CVE-2013-2028 [Com13] is a stack-based buffer overflow vulnerability in the
NGINX Server application, related to the chunk size of an HTTP request with
the header Transfer-Encoding:chunked. It was discovered in 2013 and re-
ceived a high severity score. Specifically, the ngx_http_parse_chunked func-
tion in http/ngx_http_parse.c in NGINX server versions 1.3.9 through 1.4.0
with the default setup, allows remote attackers to cause a crash via a DoS
attack or execute arbitrary code when a request with a large chunk size is
received, which triggers an integer signedness error and a buffer overflow.
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4
User-Level Execution Monitoring

Access control, in a narrow sense, is the ability of a system to grant or reject
access to a protected resource. This way, in the context of software security,
the system can keep track of who has access to what code, who can call what
function in a library and under which conditions this is possible. These re-
strictions are imposed by a set of mandatory controls that are enforced by
the system in the form of policies. Policies may represent the structure of an
organization or the sensitivity of a resource and the clearance of a user trying
to access it. A mechanism maps a user’s access request to a collection of rules
that need to be implemented in order for the system to function in a secure
manner.

An access control system can be implemented in many places and at dif-
ferent levels in an infrastructure (e.g., operating system, database manage-
ment system, etc.) and must be configured in a way that provides the assur-
ance that no permissions will be leaked to an unintended actor, which may
give them the ability to circumvent any defenses in place.

In this Chapter, we present a novel mechanism that allows access con-
trol policies for library calls to be enforced at the user-code level in order to
restrict access to functions held in a protected library, in addition to identi-
fying the complete execution path regarding the functions in question. Fur-
thermore, we offer a mechanism that further divides a library into smaller
segments (e.g. based on their functionality), which cooperates seamlessly
with our kernel-based approach in Chapter 5. At run-time, the policy sys-
tem may be used to enforce either an overall policy for the whole library, or
more refined policies for each segment. It can coexist with existing defense
techniques, boosting the security of the protected system.

The rest of the Chapter is organized as follows: Section 4.1 deals with the
access control mechanism. In Section 4.1.1, we provide an overview of our
mechanism, its strong points as well as its shortcomings. Then, we explain
how we implement it, in Section 4.1.2. In Section 4.1.3, we show that it can
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be applied in real-life scenarios and we present a case where we pinpoint the
exploitation of a vulnerability. Section 4.2 refers to our efforts to break up a
library, libc specifically, into smaller regions. In Section 4.3, we propose an
approach to create the security policies that the mechanism can enforce. Ad-
ditionally, we leverage and extend this approach to compromise an antivirus
solution. Finally, we summarize the Chapter in Section 4.4.

4.1 Library-Level Access Control

This approach corresponds to Figure 3.3. It bears much resemblance to
ltrace [Ces; Ltr], a utility that runs a specified command until it exits. It
intercepts the calls made to shared libraries by an application and displays
the parameters used and the values returned by the calls. Moreover, it can
trace system calls executed by the application. However, because it uses the
dynamic library hooking mechanism, it cannot trace statically linked exe-
cutables/libraries, as well as libraries that are loaded automatically using
dlopen(3). dlopen(3) gives the programmer the ability to inject symbols in
the dynamic library, but these symbols need to be unresolved in the main
executable or be exported in its dynamic symbol table. When the linker tries
to resolve them, it will find the injected symbols and not the original ones. A
statically linked application has neither unresolved symbols nor a dynamic
symbol table. Additionally, ltrace can only display the parameters used and
values returned by the calls. It offers no ability to manipulate them. Parts of
this work have been published in [TP17].

4.1.1 Overview

This work revisits earlier work on Access Controls For Libraries and Mod-
ules (SecModule) [KP06] that forces user-level code to perform library calls
only via a library policy enforcement engine. Our approach automates the
process of encapsulating library modules and allows entire libraries to be in-
strumented, checking the arguments of the calls to functions within a library
along the way, before reaching a policy decision. The flow of execution inside
the protected library can also be detailed, revealing the sequence of calls to
its functions.

Figure 4.1 depicts a high level overview of the steps taken when an un-
trusted app calls a protected function. In step (1), the application calls a func-
tion secured in our custom library (in this case SHA1). In step (2), instead
of the intended function, the secure wrapper version of it is executed. In-
strumented inside the wrapper, there can be argument and policy evaluation
code, which is first run before any other steps are taken (step 3). If the evalu-
ation is successful, the originally intended function is called (step 4) and the
execution continues normally.

Due to the fact that we interject our evaluation code between the original
call and the intended function, our approach is transparent. It requires no
code modifications on the library’s code, which makes it suitable for legacy



4.1. Library-Level Access Control 39

Third-party app

unsigned char in[] = "Hello World";
unsigned char out[strlen(ibuf)];
SHA1(in, strlen(in), out);

...

(1)

Custom library

typedef unsigned char *(*original_SHA1_type)(const unsigned char *d, size_t n, 
unsigned char *md);
unsigned char *SHA1(const unsigned char *d, size_t n, unsigned char *md)
{
   /** Argument evaluation code
   ** Policy evaluation code
   **/
   if (policy_verified && arguments_verified){
      original_SHA1_type original_SHA1;
      original_SHA1 = (original_SHA1_type) dlsym(RTLD_NEXT, "SHA1");
      return original_SHA1(d, n, md);
   }
}

...

(2) 

(3) 

(4) 

...

...

FIGURE 4.1: Overview of the call sequence

applications. Also, it can be used on binary programs, since there is no need
to have access to or recompile the source code of the application.

The product of the customization of a library – which is a shared custom
library – can be easily adopted by security experts and used in real-life envi-
ronments, since it only needs to be preloaded before running an application.

No context switch is necessary, using our custom library, since the ker-
nel is not invoked in anyway whatsoever. This makes our technique very
efficient. Furthermore, the encapsulation of the library functions is straight-
forward using just a python script to automate the procedure, requiring only
minimal manual intervention. Our past experience and simplicity in pro-
ducing the code, as well as major support from the community, lead to the
decision of using Python as the means to create the shared library.

Under our scheme, the parameters of the intercepted calls can not only be
observed, but also manipulated in order to be sanitized if necessary. Unlike
ltrace, our mechanism relies on dlsym(3) and dlopen(3) to find the address
of a symbol in memory, but because it also relies on dynamic library hooking,
it is unsuitable for tracing statically linked applications.

Based on our current approach, the size of the code is increased because
extra code needs to be added for every function. Before making the intended
call, an extra wrapper is executed in order to decide whether to redirect the
flow to the initial call or not.

Additionally, our framework depends on the programming language
used to develop the protecting application, since – currently – it can only
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protect applications written in C/C++.
Furthermore, if an attacker knows of the presence of the protection mech-

anism, they might be able to bypass the policy evaluation step and call the
intended function directly. Nevertheless, randomization techniques, such as
ASLR [PaX01], make direct calls to libraries untenable.

4.1.2 Implementation

Our technique monitors calls to external functions inside a protected library.
We investigated two ways of doing this: (a) individual wrappers or (b) one
overall wrapper:

• In the first approach, we install separate wrapper functions. Each func-
tion in the library that has an interface to the outside world is enclosed
in a wrapper. When the wrapper is called, first it executes policy eval-
uation code to determine if the caller is permitted to call the function
and then redirects the flow to the originally intended function or not.

• In the second case, the wrapper stands at the entry point of the library.
A policy enforcement engine inside the wrapper monitors the incoming
requests and when a call is made to a function, it determines whether
that call is warranted (i.e., in accordance to the system policies). It then
diverts the flow of execution to the called function.

In both approaches, the policy evaluation code can examine the argu-
ments of the call to ensure that they comply with the security policy asso-
ciated with the running program.

For our prototype, we decided to follow the first path, due to the sim-
plicity of the implementation. As an example, we create a wrapper for the
OpenSSL library. The header files of the library can be included in any
C/C++ program by the developers and contain all the functions that they
can call. First, we extract from the header files all the relative functions and
their signatures. The extraction is done using a custom Python script that
identifies each function that is within the scope of our work and analyzes its
arguments. This way we are able to manipulate each of the arguments in any
way necessary. Before calling the originally intended function we add code
that verifies that the module, indeed, captured the call and that we oper-
ate from within the custom library. After implementing the security features
(e.g., argument examination, policy enforcement, etc.) and if the continua-
tion of the execution is permitted, the flow progresses to the original path.
The result is a C file that is compiled into a shared library which is preloaded
when running a program.

Automatic generation of policy (learning phase) can also be supported,
while at run-time the policy system can be used for policy enforcement
and/or for ensuring that the program behaves in the same manner as in the
learning phase. During this phase, as many as possible execution paths need
to be discovered that correspond to actions taken from a benign application,
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aiming to implement a CFI-like [Aba+05] scheme that uses library calls to ex-
tract execution paths, instead of intercepting or instrumenting or emulating
the lower-level control flow instructions.

However, since this approach is essentially another shared library loaded
into the program at run-time at the user space, an advanced attacker could be
able to bypass it and circumvent the policy enforcement step. By-default en-
abled randomization techniques, as well as hardening approaches at the ker-
nel side (detailed in Chapter 5) work in parallel to this user-level approach,
making it much more difficult for an adversary to bypass the security policy
evaluation.

4.1.3 Use-Case Study

There are several real-world scenarios that this mechanism can find applica-
tion to. In the context of Digital Rights Management (DRM), it can provide
access control in order to restrict usage of a piece of software. The owner of
the software retains the right to distribute it on their own conditions (e.g.,
after getting some form of payment or even just recognition for their efforts)
or prevent the theft of it.

In the case of a library that requires heavy resources from the host sys-
tem, the administrator may wish to control access to the rights to invoke the
library, in such a way that the system does not hang by over-use or is not
affected by a DDoS attack. Access restrictions can be imposed according to
certain criteria or security policies enforced by an organization.

The misuse of a critical component in a secure infrastructure can result in
unforeseen consequences for the system. Our approach can make sure that
only authorized personnel can have access to the secure part. Even in the
case of deliberate actions that lead to an attack that jeopardizes the system,
our framework can be used as a logging and/or training mechanism. The
inner workings of a protected library will be traced, which will follow the
flow of execution of functions held within the library. Forensic actions (after
the fact) can, then, be taken to analyze in a more detailed view the events
that led to the compromise and identify the culprits responsible. Training
exercises are also possible, so that the personnel will be able to recognize the
events of the attack.

To showcase the actual applicability of our mechanism, in this section,
we present a scenario where a vulnerability of an application is exploited to
affect the availability of the system. In our use-case, we use a vulnerable ver-
sion of OpenSSL library, where a buffer overflow is triggered under specific
circumstances to launch a DoS attack, in order to crash the application. By
using our instrumented library to observe calls to the OpenSSL functions, we
can better understand the behavior of the attack and characterize the vulner-
ability.

As mentioned in Section 3.5, ChaCha20-Poly1305 heap buffer overflow
is a vulnerability related to TLS connections using *-CHACHA20-POLY1305
cipher suites. Although it was addressed in versions later than 1.1.0b, we can
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use our prototype to examine the chain of events inside the OpenSSL library
that result in a crash when the vulnerability is exploited.

When we first start an OpenSSL server in-
strumented with our shared custom library (e.g.,
LD_PRELOAD=/home/user/Desktop/custom_lib.so ./bin/openssl s_server

-cipher 'DHE-RSA-CHACHA20-POLY1305' -key cert.key -cert cert.crt

-accept 4433 -www -tls1_2 -msg), an initialization phase takes place,
where we can see that memory is allocated for the s_server app. Excerpt
from our mechanism:

...............
Intercepted call to function CRYPTO_strdup
String parameter: apps/s_server.c
...............

Then, the private key and certificate files are read. Excerpt:
...............
Intercepted call to function BIO_new_file
String parameter 1: cert.key
String parameter 2: r
...............
Intercepted call to function BIO_new_file
String parameter 1: cert.crt
String parameter 2: r
...............

After that, a pointer to every cipher supported by TLS v1.2 is pushed on the
cipher stack, if it is not already there. Excerpt:

...............
Intercepted call to function EVP_add_cipher
Intercepted call to function EVP_aes_256_ccm
Intercepted call to function EVP_add_cipher
Intercepted call to function EVP_aes_128_cbc_hmac_sha1
...............

Continuing in a similar manner, a pointer to every message digest supported
by TLS v1.2 is pushed on the digest stack, if it is not already there. In addi-
tion, aliases are mapped to ciphers/digests. Excerpt:

...............
Intercepted call to function EVP_md5
Intercepted call to function EVP_add_digest
Intercepted call to function OBJ_NAME_add
String parameter 1: ssl3-md5
String parameter 2: MD5
Intercepted call to function EVP_add_digest
Intercepted call to function EVP_sha1
...............
Intercepted call to function OBJ_nid2sn
Intercepted call to function EVP_get_cipherbyname
String parameter: DES-EDE3-CBC
...............
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Then, memory is allocated based on the compiled-in ciphers and aliases. Ex-
cerpt:

...............
Intercepted call to function CRYPTO_malloc
String parameter: ssl/ssl_ciph.c
Intercepted call to function FIPS_mode
...............

At the end of this initialization process, an “ACCEPT” message is displayed,
notifying the user that the server is up and running and awaits incoming
connections. Excerpt:

...............
Intercepted call to function BIO_printf
String parameter: ACCEPT
...............

To automate our efforts we used an open-source TLS test suite and fuzzer
named tlsfuzzer [Kar15], written in Python, which includes a script to exploit
CVE-2016-7054.

When the script is executed, we see a number of calls to BIO_printf func-
tion which display the messages exchanged between client and server (Clien-
tHello, ServerHello, ServerKeyExchange, etc.). Then, at some point during
execution, we see a call to ERR_put_error which signals that an error oc-
curred and adds the error code to the thread’s error queue. Excerpt:

...............
Intercepted call to function ERR_put_error
String parameter 1: ssl/record/ssl3_record.c
...............

Continuing, the program gets the error’s code from the queue via
ERR_peek_error. Then ERR_print_errors is called to print the er-
ror string. At this point, memory is freed via calls to functions
like CRYPTO_free, BIO_free_all, CRYPTO_free_ex_data, OPENSSL_cleanse,
EVP_CIPHER_CTX_free etc. Under normal circumstances, the server would
reset the connection awaiting new incoming messages, but due to the CVE-
2016-7054 bug the heap is nullified and the sever crashes, potentially indicat-
ing a DoS attack.

During the exploitation of this vulnerability, our library shows all the sys-
tem calls made from the phase of the initialization of the server, to the hand-
shake between it and the client, to the crash after the attack. This provides
a forensic trail to identify the functions executed in the OpenSSL session, in
order to pinpoint where the vulnerability is triggered – in this case, when the
memory is freed.

4.2 Finer-Grained Segmentation

A basic goal behind the secure framework is to significantly confine an at-
tacker’s code base that is available at any given point in time, which results in
them having much lower chances of mounting an attack. Nevertheless, there
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may be instances where the memory segmentation is insufficient to stop an
attack this way (e.g. as in [Goo18; ZB18]). The same goal can be applied to
each of the separate memory areas. Thus, the (sub)sections are only able to
interact with other (sub)sections, which are specified by the security policy.
The main aim of this confinement is to limit the propagation of the attack, in
the sense that even if an attacker manages to gain a foothold inside a sepa-
rate region, they will not be able to execute code not only from other regions
indiscriminately, but from within the same region as well.

In a given program, there is a number of libraries loaded at run-time that
are essential for the program to run. However, many of the functions in-
cluded in such a library may not be necessary, depending on what the pro-
gram does. This results in increased memory consumption, when there may
not be any need for it. For example, libc is the standard library for the C
programming language which is used extensively for development in Linux
environments. Every program written in C uses some version of libc by de-
fault. However, libc and more specifically the version that we are dealing
with – GNU libc, glibc – is big and contains an array of functions to perform
many kinds of procedures. There are instances of programs that take up 1KB
of memory, when libc that needs to be loaded takes up 17 MB of memory.

Up to a point, libc is already compartmentalized with respect to its por-
tions that need to be specifically loaded when a program requires their
use (e.g., libm, libcrypt, etc.). Nonetheless, based on the source code of
glibc [Glic], it contains more than 700 directories, 17.500 files and 4.000.000
Lines of Code (LoC). Consequently, it is apparent that it is a big library that
offers ample attacking ground for a determined adversary. The more code
resides into the loaded libc, the more code space it takes up during execu-
tion and the more possibilities an attacker has to exploit a bug and mount
an offensive against the underlying system. With our approach that requires
only minimal changes and additions to glibc source, we minimize the code
loaded at run-time only to what is absolutely necessary, by loading only spe-
cific portions of libc that are mandatory for the program to run correctly and
nothing else.

In this section, we present our efforts to compartmentalize libc at a greater
granularity, so that only the absolutely necessary functions/portions can be
loaded during execution and less memory can be used by the running pro-
gram. Figure 4.2 shows the idea behind our approach. The complete libc (to
which one gate corresponds) is broken up into smaller regions along the lines
of specific functions (e.g., dysize() from time directory) or of specific func-
tionality (i.e., distinct directories from the source code - see Table 4.1). One
or more regions can, then, be loaded separately if and when an application
requires it, without having to load the whole library.

Following the basic principle behind Figure 3.4 which still applies in this
case, one gate is mapped per region, proving that this approach works seam-
lessly with what we present in Section 5. Parts of this work have been in-
cluded in [Tsa21].
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FIGURE 4.2: libc compartmentalized at directory/function
granularity

4.2.1 Related Work

In [Har01], the author presents his approach towards building a custom min-
imal set of the glibc C libraries, using only the necessary objects required by
a specific (group of) executable(s). He first determines which objects from
libc library will be needed by the application and then builds a custom ver-
sion of libc that includes only these objects. Then the application is executed
after being linked with the minimal custom libc. This approach is similar to
our own in the sense that it tries to minimize the memory footprint and size
(i.e. attack surface) of libc, however it requires that every application be an-
alyzed in order to determine the necessary objects and a separate version of
libc be built for each specific application. This way, the user needs to interact
with the tool and have technical knowledge in order to operate it, for each
application they want to run with the minimal libc. Our approach is one-off,
meaning that the library is built only once and can then be used by all appli-
cations automatically. Furthermore, it is totally transparent to the user, since
they are not required to build libc themselves, but only link a specific extra
library that they want to use at compile/execution time, similarly to other
libraries of libc that need this by default (e.g., libm, libcrypt, etc.).

In Chapter 5, we show how to separate the memory of a running process
into regions along the lines of loaded shared libraries, one of which is libc.
Based on our work, by further compartmentalizing libc (or any other shared
library), besides smaller memory footprint, we also manage to strengthen the
security of a running application since there are more gates – meaning more
security checks – that need to be passed successfully in order to execute code
from an intended region. Additionally, we decrease the attack surface of
a potentially malicious attempt, since libc contains only the bare minimum
and all other code that the application requires is loaded in the form of extra
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libraries, leading to much smaller size of the loaded libraries.

4.2.2 Implementation Specifics

This Section contains details on two approaches: (a) how to extract a whole
directory and (b) how to extract specific functions from the source code of
glibc - version 2.3.2. In both cases, an extra dynamic library is created that
needs to be explicitly loaded at compile/execution time, if we want to use
the specific functions in our program.

catgets directory

In the first case, we extract the whole catgets directory from glibc, which deals
with some translation aspects. In order to do this and create an extra dynamic
library containing the related functions, we need to modify the following
files:

1. <glibc_source_code_directory>/Makeconfig

2. <glibc_source_code_directory>/shlib-versions

This can be extended to include other functions from other portions of libc, if
needed.

Makeconfig: In this file, we need to remove the catgets directory from the
list of subdirectories containing the libc source. This way, the subdirectory
does not get built into libc.

• In line 1270, we delete catgets

shlib-versions: In this file, we need to “tell” the final libc build that there
will be an extra shared library which we will be able to use. So, after line 75
(end of file), we add:

1 l i b m a r t s a n _ c a t g e t s = 1

catgets_build_script: Additionally, we need to run a custom script that
takes care of some dependencies and compiles all catgets-related C files into
a shared library, based on the normal-case build process of glibc.

Compile, link and run: Next, we build glibc normally [Glia; Glib]. Then,
in order to use a catgets-related function in a program, we must load it ex-
plicitly, as shown in Figure 4.3. In point (1), we compile and link with the
system libc, so the program runs as expected. When, in (2), we compile and
link with the custom libc that does not contain the catgets-related functions
(in this case catopen()), when trying to execute we get an error since these
functions are missing. After linking in the extra library with LD_PRELOAD in
(3), the program runs as in the normal case.
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FIGURE 4.3: Compiling and using a separate catgets-related
function

dysize function

There may be instances that even greater granularity is required, at a function
level. In this second case, we extract a single function (dysize) from the time
directory and create the extra dynamic library containing only this function.
Three files need to be modified, in order to successfully do this:

1. <glibc_source_code_directory>/time/Makefile

2. <glibc_source_code_directory>/time/Versions

3. <glibc_source_code_directory>/shlib-versions

Makefile: In this file, we need to remove the dysize() function from the
list of routines that will be built for the time part of glibc. We also need to
state that we want an extra library to be built that contains only the dysize()
function.

• In line 36, we delete dysize

• After line 41, we add:

1 extra − l i b s = l ibmartsan_dysize
2 extra − l i b s −others = $ ( extra − l i b s )
3 l ibmartsan_dysize − r o u t i n e s = dysize

Versions: In this file, after line 82 (end of file), we add:

1 l ibmartsan_dysize { GLIBC_2 . 0 { dysize ; } }
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1 l ibmartsan_dysize = 1

shlib-versions: In this file, after line 75 (end of file), we add:

Compile, link and run: Next, we build glibc normally [Glia; Glib]. Then,
in order to use dysize() in a program, we must load it explicitly with −l flag,
as shown in Figure 4.4.

FIGURE 4.4: Compiling and running the separate dysize func-
tion

In point (1), we compile and link with the system libc, so the program
runs as expected. When in (2), we compile and link with the custom libc
that does not contain dysize(), when trying to execute we get an error since
dysize() is missing. In point (3), after linking in the extra library, the program
runs as in the normal case.

Effort

In each of the previous cases, it is evident that only minor changes are re-
quired to make our approach happen:

(a) catgets

• Deletion of one word

• Addition of 1 line in total

• Execution of a pre-made script

(b) dysize

• Deletion of one word

• Addition of 5 lines in total

In Table 4.1, we provide a list of portions of glibc with their respective final
code space required that can be extracted and compiled as shared libraries.
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argp 1 MB

assert 190 KB

csu 968 KB

ctype 606 KB

dirent 2.5 MB

gmon 593 KB

grp 1.5 MB

gshadow 1 MB

iconv 3.6 MB

inet 8.2 MB

intl 2.4 MB

io 5 MB

libio 15.3 MB

malloc 2.6 MB

nscd 4.7 MB

posix 8.3 MB

pwd 1.2 MB

resource 566 KB

setjmp 191 KB

shadow 1.2 MB

signal 1.9 MB

socket 1 MB

stdio-common 9 MB

stdlib 7.1 MB

string 8.5 MB

sysvipc 717 KB

termios 653 KB

time 3.3 MB

wcsmbs 6.7 MB

wctype 927 KB

TABLE 4.1: glibc portions and their size

4.3 Policy Generation

In order to implement access control at the library level, we rely on security
policies that dictate to the monitoring mechanism what transitions are per-
mitted at run-time. These policies can originate from various sources, e.g.:

• the library designer/developer,

• the monitoring mechanism presented in Section 4.1 operating in learn-
ing mode (i.e., in an isolated environment that ensures nominal execu-
tion without outside interference),

• a policy specification language (e.g., similar to [Ham+16; HP17] that
uses the KeyNote engine [Bla+99], or to the one used by systrace(8)).

In this Section, we present our own approach in defining a policy, as part
of an internal report at TU Braunschweig (TUBS), by examining the update
procedure of the Sophos Anti Virus (AV) Linux application that is distributed
in the academic community at TUBS.

We point out here that the ideal way is a combination of the above. Op-
timally, the application-library designer/developer creates the policy in a
specification language, by leveraging our monitoring mechanism. They are
the most suitable to provide it, since they know their product best and are
in a position (e.g., have access to the source code, can run extensive testing,
etc.) to create a comprehensive and complete security policy.

4.3.1 File Organization

In [Pre17], Prof. Prevelakis managed to uncover the credentials used to up-
date the AV, as part of an internal technical report at TUBS. By using these
credentials, we manage to download all the files from the original update
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website and set up a local mirror of the server, which contains three distinct
sets of files:

(a) The ones that exist in the local server that we set up (server files),

(b) the ones that are created when the Sophos application is installed in a
directory (install files) and

(c) the exact copies of the server files that exist in a folder inside the install
directory, called cache (cache files – <directory>/update/cache).

4.3.2 Code Analysis

In order to run the update, the command <install directory>/bin/savupdate
needs to be executed. Then, the control is transferred to the python scripts
responsible for the update procedure. These scripts are inside cidrep.zip pack-
age, located in <install directory>/update. After careful run-time analysis, the
following diagrams depict the relevant parts of the flow of execution within
and among the scripts (Figures 4.5, 4.6, 4.7, 4.8 and 4.9).

FIGURE 4.5: Overall sequence of the Sophos update procedure

Since, now, we have every possible execution path when Sophos AV re-
ceives an update, we can include them in a security policy that will be en-
forced at run-time during this procedure. For example, in Listing 4.1, we can
see the security policy related to CidSimple (Figure 4.7). For a specific func-
tion in the file (in this case replicate()), there are a number of next{} state-
ments. Inside next{}, there can either be f ile{} statements (which means
execution is transferred to another file and subsequent functions), or more
f unction{} statements (referring to internal functions in the same file).

4.3.3 Compromisation Attempts

After producing the complete picture of the update sequence, as a step fur-
ther, we experimented on if and how it was possible to compromise the ap-
plication, by using what we learned so far.
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FIGURE 4.6: Execution paths in Updater.py file

FIGURE 4.7: Execution paths in CidSimple.py file
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(a) CidUpdater (b) Verifier

FIGURE 4.8: Execution paths in CidUpdater.py and Verifier.py
files

(a) CidUpd (b) UpdIndex

FIGURE 4.9: Execution paths in CidUpd.py and UpdIndex.py
files

When the update procedure starts, the application downloads the server
file cidsync.upd which is a list of all the cache files that should exist. If one
doesn’t exist, it is downloaded from the server and the install file <direc-
tory>/engine/versig is executed to perform signature verification. The first
approach was to identify the OpenSSL version that versig is using, to de-
termine if there are any known vulnerabilities for it. Version 1.0.2j had some
vulnerabilities, none of which were relevant to our cause.

The next step is to modify the cidsync.upd file that is downloaded when
the update starts. The structure of the contents of this file, with respect to
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1 f i l e CidSimple {
2 funct ion r e p l i c a t e {
3 next {
4 f i l e CidUpd {
5 funct ion _download { }
6 }
7 }
8
9 next {

10 funct ion _ver i fyAgains tmani fes t s {
11 next {
12 f i l e UpdIndex {
13 funct ion ver i fy Agai ns t man i fe s t s { }
14 }
15 }
16 }
17 }
18 }
19 }

LISTING 4.1: Example of a security policy

listed files, is as follows:

• four-byte number: length of entry in bytes 1

• four-byte number: length of **file** in bytes

• four-byte number: checksum of file

• file path <00>

To change the contents of a listed file, the actions needed are:

1. After saving the modified file, we run the update once – instrumented
with the custom library from Section 4.1 – to get the new file checksum
with which we modify the respective four-byte number in cidsync.upd
(the update fails)

2. Update once again to get the new checksum of cidsync.upd and change
it in the file (last four bytes – update fails again)

With this in mind, we create a new versig file in order to bypass the sig-
nature verification step and perform an arbitrary action (e.g., create a file in
/tmp). Since the new versig file is smaller in size than the original one, its size
inside cidsync.upd needs to be changed, too. Following the change procedure
above, the update fails again because the size of the files is vetted against

1This is the number of bytes for the file length, file checksum and file path including the
terminating NULL. It does NOT include the length-of-entry field itself
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the manifests of the application. The manifests contain the path of each file,
its size and its SHA1 hash and are digitally signed by Sophos, so cannot be
modified. So, the custom versig file is padded to match the original’s size
and this works as expected. The signature verification is bypassed and a file
is created in /tmp. However, the versig file is located in the install directory,
hence in order a potential attacker have access to it, they have to somehow
gain root privileges (e.g., perform privilege escalation).

Another angle is to modify the python script responsible for the retrieval
of the path of the versig file (these paths are hardcoded), in order to add a cus-
tom path of our own versig. The same principal as above (i.e., root privileges)
applies here as well.

Other ideas were also entertained, but lead to non-applicable attempts.
One of these ideas was to change the length of a file’s entry in cidsync.upd to
0xFFFF to see if we could cause a reaction. This meant that the file path after
the checksum would need to be (64k-8) bytes. But, the update procedure
checks if all the files actually exist, so the file would need not only be real,
but have a (64k-8) bytes–long path (besides, there is a hardcoded limitation
of up to 512–byte paths).

Another direction was an SQL-injection-like approach. Changing the file
names in order to execute python code did not lead to a potential attack.
Before searching if a file exists, the update procedure stores all the file names
in an array and then vets them against the manifests. If a name in the array
does not correspond to any of the manifests, it is removed from the array.
Then and only then, all the remaining files are checked. Parts of this work
have been included in [Tsa18].

4.4 Summary

In this Chapter, we present an access control scheme that produces custom
libraries and examines calls to functions within them along with their argu-
ments, to ascertain if they adhere to specific security policies. Our approach
improves important aspects of SecModule, in which it can be incorporated,
simplifying and automating the generation of libraries and providing a seam-
less way of evaluating the arguments of each call.

Furthermore, we present a mechanism that compartmentalizes a library
at an even greater granularity than normal, at a functionality/function level
and allows users to load only specific parts of the library that are necessary
for execution. This way, we do not only save resources, but increase secu-
rity as well by performing more security checks, in conjunction with the ap-
proach detailed in Chapter 5.

Additionally, we present an approach on how to analyze the execution
of an application, extract all information pertaining to the transitions at run-
time and include them in a security policy.



55

5
Kernel-Level Monitoring of Library

Call Invocation

The ability to monitor when user code invokes a library function offers nu-
merous advantages. For example, during black-box testing of code, high-
level CFI checking, run-time access-control policy enforcement and so on.
However, for this technique to be useful it must be efficient and able to func-
tion even when the target application is provided only as a statically linked
executable.

In Chapter 4 we demonstrated how library calls may be intercepted using
wrappers. But this approach works only with dynamically linked code and
requires user intervention - albeit a small one - and some technical expertise
to process the function arguments. Furthermore, since it is essentially just
another library of the user-space application, it is possible it can be bypassed
by a technically-savvy attacker. Consequently, it cannot be used as a stan-
dalone access control/monitoring mechanism. However, its main advantage
is that, after the shared custom library is produced, it offers the ability to
monitor/sanitize the arguments of each call in detail.

In this Chapter, we present a more concrete technique which the previous
one compliments. This approach operates on the secure kernel side, so it is
much more difficult for an attacker to bypass it. It corresponds to Figure 3.4.
Under this scheme, each library - either dynamically or statically linked - con-
stitutes a separate code-region. At any point in time, only pages belonging to
that one region are marked as executable, so when code branches to a page
outside the “home” region, it lands in a non-executable page, a fault occurs
and the kernel takes over. By adding suitable code to the kernel, we can de-
termine (a) whether the call should go ahead, (b) whether the arguments are
acceptable and (c) ensure that the kernel is informed when the code returns
from the called function.

The rest of the Chapter is organized as follows: Section 5.1 provides the
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motivation behind our approach to monitor the execution of a program. In
Section 5.2, we present the design on top of which our idea is based. In Sec-
tion 5.3, we delve into details on how we implement it. Section 5.4, contains a
use-case study where we apply the mechanism on a vulnerable application.
In Section 5.5, we present a training environment that includes parts of our
framework. Finally, we summarize the Chapter in Section 5.6.

5.1 Execution Monitoring: Challenges

As the advancement of technology offers capabilities which result in attack-
ers on every level getting more competent and effective, attacks have become
more elaborate. Therefore, we need to establish an adequate level of security
in software systems. Complete security of a program is unfeasible and so it
becomes imperative to detect a situation where a program enters a possibly
insecure state and take some action to respond to it. Our idea is to implement
such actions at an abstract level, between the OS and a running application.

Mechanisms such as CFI [Aba+05], systrace(8) [Pro03], SecMod-
ule [KP06], etc., aim to control the behavior of a program based on some
predetermined policy. When the program attempts to perform some action
that is in conflict with its execution policy, the security mechanism detects
this and takes corrective action. Unlike most runtime security mechanisms,
where violations in most cases lead to the termination of the offending pro-
cess, the call intercept technique offers a variety of options in dealing with
the security breach. For example, systrace(8) may rewrite function argu-
ments (e.g. truncate or replace strings), or return an error without making
the call.

A key concern is the level at which the call intercept should take place.
Some papers propose to carry out the checks at the machine language level,
via call graphs, while others at the system call level. We believe that car-
rying out the analysis at an even higher level has many benefits, not least
being close to the application logic. With this in mind, we chose to base our
system on the monitoring of library calls. We, therefore, had to consider the
performance penalty of carrying out our high-level monitoring.

Our compromise is to designate the main application and each library as
separate areas and monitor program jumps from one area to another. We
then program the MMU in such a way so as to cause a fault when the control
flow moves from one area to another. We do this by designating all code
pages outside the currently executing area as non-executable. In this way, a
jump within the current area is carried out normally, but a jump to a different
area causes a fault. This technique is very efficient, while at the same time it
allows systrace-like control of function invocation, argument checking and
modification etc. Parts of this work have been published in [TP19; TP20;
TP21a; TP21b].
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5.2 Design Overview

The goal of our approach is to thwart control-flow hijacking attacks by seg-
regating a process’s executable areas which correspond to external libraries
or the main executable and by imposing strict control over any attempt to in-
voke such an area, through a policy enforcement engine. In order to achieve
this, in Section 3.1 we set a number of requirements that our mechanism must
fulfill. To abide by these requirements, we provide a customized Linux ker-
nel that leverages the MMU in order to separate the memory of a process
into regions, based on the libraries that are loaded upon a program’s execu-
tion. When an untrusted, user-space application issues a call to a protected
library, our custom kernel intercepts it and redirects it through a policy deci-
sion mechanism, before allowing it to continue.

In order to intercept all the calls inside the libraries that an application
uses, our system loops through all the memory regions of a running process
and identifies all the executable ones (e.g .text/code region) that correspond
to a linked library or the main executable. These regions are where the actual
executable code is found. For each of these regions, it maps a special custom
library - which we designate as gate - in the running process’s address space
and associates it with the corresponding region. Then, it marks these regions
as non-executable. When a program is running it issues, for example, a call
inside LibX. After the transition, all the other executable regions (e.g., of
main, LibY, etc.) have their NX-bit set. If from there the flow of execution
is transferred to another library, the same procedure happens again. In a
similar fashion, the regions change from executable to non-executable when
the flow returns upon execution completion.

This procedure ends up causing a page fault when the process tries to
call a library, since all of its functions are located in currently non-executable
regions. The Page Fault Exception Handler (PFEH) [BC05] is, then, invoked
to resolve the issue. In order to continue executing, we modify the PFEH so
it redirects the flow inside the associated gate library that we had previously
mapped in the process’s memory area. If the policy check is passed, PFEH
marks the specific non-executable region as executable and continues with
the call. After it is completed normally, we may need to make the region
non-executable again (more information about this in Sections 5.3.4 and 5.3.9)
and the whole procedure starts from the beginning. Figure 5.1 shows this
sequence of events.

In order to avoid being overly verbose, we choose to monitor the exe-
cution at an abstract level. This approach operates at the granularity of a
library/main executable, meaning that we concern ourselves only with each
external call to a specific library and not with how - internally - a library han-
dles a call to one of its own functions, which is left to the library designer.
For example, consider when a program calls the print f (3) function from libc
library. Internally print f (3), first, parses the arguments of the call, i.e. out-
put format (how) and printable arguments (what) and then passes them as
input to v f print f (3), another function of libc. Then, v f print f (3) analyzes
these inputs and displays the text in the desired format. We expect that the
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FIGURE 5.1: Kernel intercept design

library/application designer provide us with the correct and complete secu-
rity policy associated with their product, in order to be able to identify the
complete list of permissible function calls. In a different case, the list will not
be as comprehensive (i.e., when the system administrator is responsible for
creating it).

5.3 Implementation Specifics

To actualize our approach, we used Linux kernel version 4.16.7, the latest one
at the start of the development phase. We customized the _do_ f ork() func-
tion which is responsible for creating new processes/threads. Upon process
creation, our mechanism identifies the regions of contiguous virtual mem-
ory (Virtual Memory Areas - VMAs) that are executable and correspond to
a linked library or the main executable (similarly to the /proc/<pid>/maps

kernel utility) and maps the custom gate library in the process’s memory,
one for each identified VMA (Figure 5.1 (1)). Then these VMAs are marked
as non-executable (Figure 5.1 (2)). This is done by changing the flags of a
VMA. These flags designate the VMA access rights (e.g., if it is read-only,
writable, executable, etc.). In our case, we are interested in the VM_EXEC flag.
The modification of it can be one of two actions: (a) clear, which means the
flag becomes zero “0” and execution is forbidden from the VMA and (b) set,
which means VM_EXEC becomes one “1” and the VMA becomes executable.
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5.3.1 Page Table Entries

Additionally, we modify all the Page Table Entries (PTEs) that correspond
to the identified VMAs. In memory, there is a mapping between virtual
and physical addresses. Each of these “translations” is stored as an entry
at an in-memory table called Page Table (PT). Dedicated to it is a cache of the
most common PTEs, the Translation Lookaside Buffer (TLB), which is used to
boost performance when accessing a memory location. Every time we want
to modify a PTE, we perform a page table walk (go through the multi-level
PT [Shu16] in its entirety) (Figure 5.2) to find a specific PTE and then clear the
processor cache and the TLB from any record of it, in order the modification
take effect. Modifying all the PTEs of a VMA is computationally expensive,
however it is performed only once per process/thread, which keeps the per-
formance overhead to a minimum.

Virtual address
PGD P4D PUD PMD PTE

FIGURE 5.2: Page table walk

5.3.2 Deliberate Page Fault

After a VMA and corresponding PTEs are marked as non-executable, when
a process tries to perform a library call, it will land on an address in a non-
executable page (Figure 5.1 (3)), which will result in a page fault. An error
code is associated with every fault that represents what kind it is. The bits
of an error code can be found in Table 5.1 [Err]. In our case, the error code
produced has a value of 1516 = 2110 = 0101012. When we correlate this num-
ber with Table 5.1, we can see that the bits X86_PF_PROT, X86_PF_USER and
X86_PF_INSTR have a value of one “1”. This means that this was a protection
fault caused by a user-mode read access (X86_PF_WRITE is zero “0”) when
an instruction fetch was attempted. In other words, a user-space application
tried to read from a page that is protected against this action.

When a page fault occurs, the PFEH [BC05] intervenes to handle it. This
is done through the interrupt service function do_page_fault() (Intel x86-64
architecture). At this point and before the function has a chance to address
the fault by itself, we step in and redirect the execution flow inside our policy
enforcement engine (Figure 5.1 (4)), which we had previously installed for
each VMA.

5.3.3 NX-bit

After the gate checks the security policy and allows the call to continue (Fig-
ure 5.1 (5)), we need to make the memory executable again, which we accom-
plish based on the virtual address of the function that caused the page fault.
Both the PTE and the VMA that correspond to a specific virtual address need
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Name Value Description

X86_PF_PROT 1 << 0 0: no page found

1: protection fault

X86_PF_WRITE 1 << 1 0: read access

1: write access

X86_PF_USER 1 << 2 0: kernel-mode access

1: user-mode access

X86_PF_RSVD 1 << 3 1: use of reserved bit detected

X86_PF_INSTR 1 << 4 1: fault was an instruction fetch

X86_PF_PK 1 << 5 1: protection keys block access

TABLE 5.1: Page fault error code bits

(a) Bit values of an executable page

(b) Bit values of a non-executable page

FIGURE 5.3: PTE value comparison of executable and non-
executable pages

to be executable if code from that address is to be executed, so we perform
the inverse procedure than before (i.e., set VM_EXEC flag and clear NX-bit).

In the Intel x86-64 architecture, the most significant bit of a PTE is the
NX bit [WX03], which is used to designate a page where execution of code is
not permitted. Inversely from the case of the VM_EXEC flag, the modification
of the NX-bit can be: (a) set, which means the NX-bit becomes one “1” and
execution is forbidden from the page and (b) clear, which means the NX-
bit becomes zero “0” and the page becomes executable. For example, in our
implementation, when the NX-bit is clear, the value of a specific PTE that
represents an executable page can be seen in Figure 5.3(a). After we set it,
the value becomes that of Figure 5.3(b). Comparing the two values, we can
see that the only difference is in the most significant (64th) bit which is the
NX-bit. Bit numbers 36 through 61 have a zero value and have been omitted
for convenience.

5.3.4 Shadow Stack

After clearing the NX-bit and setting the VM_EXEC flag, the library call con-
tinues (Figure 5.1 (6)). Following its completion, we may need to make the
region non-executable again (Figure 5.1 (2)). In order to determine this, at
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FIGURE 5.4: Leveraging a compact-like shadow stack

first we leveraged the idea of shadow stacks [CH01; DMW15; BZP18]. Orig-
inally, a shadow stack is a separate protected memory region where an at-
tacker cannot have access. When a function is called, the return address of
that call is stored in the shadow stack. When the function returns, the saved
return address is either compared against the program’s return address on
the main stack, or it is placed directly on the main stack overwriting that re-
turn address. In our case, we implemented a compact-like form of shadow
stack [BZP18] to save the virtual addresses where the page faults occurred.

In order to adhere to the library-level granularity of our design, we first
check whether there is a previous faulting address stored in the shadow stack
(Figure 5.4 (1)). If there is none, we store the current one (Figure 5.4 (2)). If
there is, we check to determine if it corresponds to the same VMA as the cur-
rent one (meaning same executable/library) (Figure 5.4 (3)), in which case
we leave the VMA/specific PTE as executable and push the current faulting
address in the shadow stack. Even if the VMA remains the same in the next
iteration, the PTE will have changed to a new non-executable one which will
produce the next page fault to be intercepted.

If the previous and current VMAs are different (meaning different exe-
cutables/libraries by extension), all the saved addresses in the shadow stack
are popped and their corresponding PTEs and VMA (i.e., the whole previous
VMA) are marked as NX (Figure 5.4 (3a and 3b)), before pushing the current
faulting address in the shadow stack. At this stage all the addresses of our
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process are in a non-executable state, but the execution is in the context of the
PFEH. From there it is redirected inside the gate, where the security policy
is checked. If permission to continue execution is granted, which means that
the current faulting address is inside the permissible addresses list, the VMA
and PTE that correspond to that address are marked as X and the whole se-
quence starts again.

This procedure is performed automatically on the kernel side, without re-
quiring access to the source code/binary of the application or linked libraries,
thus making our approach completely transparent.

5.3.5 Kernel Modifications

In order to implement our system, we had to customize three key data struc-
tures inside the kernel, as well as the fault handling and process creation
routines. However, these modifications are minor and incur only minimal
increase in the Trusted Computing Base (∼500 LoC) and run-time overhead.

vm_area_struct defines a Virtual Memory Area (VMA) [Vma]. A VMA is any
part of the process’s virtual memory space that has a special rule for the page
fault handlers (e.g. a shared library, the main executable etc.). We added
an extra field that designates a special VMA, where our gate library
is mapped in. We chose to add the extra field here so it is easier to
associate the special vma with the executable vma.

mm_struct stores information on the MMU state and the address space that
the running process belongs to [Mms]. We added an extra field to store
the offset of the executable area of our library, which we calculate at the
mapping stage. We chose to add the extra field here so it is easier to re-
trieve the offset when we intercept the page fault and redirect execution
to the proper address inside the gate.

task_struct stores information about a process [Tas]. There is one such data
structure associated with every running process in the system. We
added two extra fields, one to associate a shadow stack with the pro-
cess and one to designate if the process has the gates already mapped
in. We chose to add these fields here, because they are required on a
per-process basis.

__do_page_fault() is the function responsible for handling the page faults
when they occur [Dop] - essentially the PFEH. We customized it to in-
tercept the specific page fault caused by our approach and perform the
redirection.

_do_fork() is the function responsible for creating all the process-
es/threads [Dof]. This is where the initial NX marking takes place. We
customized it in order to be able to instrument all the instances of a
process in the system.
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ShadowStackNode is a custom structure that represents a shadow stack
node. It is used to hold a faulting address and point to the next node in
the shadow stack. Adding one, dynamically enlarges the shadow stack,
while removing one shrinks it.

5.3.6 Custom Variables

In order to instrument a process that we are interested in, we iterate through
the list of the kernel’s processes and select the specific one. This is done after
the process starts. There is also the option to do it as it starts, by implement-
ing a kprobe in the _do_ f ork() function.

There may be several instances of a process, so after having selected a
specific one, we first check to see if it has already been instrumented, in
which case we simply ignore it. Continuing, we set a custom variable of
the process’s address space (mm_struct) to the start of the executable area of
gate_library.o (see Section 5.3.7 - we’ll use this later). We, also, initialize a
custom variable of the process (task_struct) which we will use to check if the
current and previous memory areas are different, so we can adhere to the
library-level granularity.

5.3.7 Gate Library

As the first step in our approach (Figure 5.1 (1)), we need to identify all ex-
ecutable VMAs and for each one map a special VMA that corresponds to
our gate library and associate it with the related VMA. The gate is essentially
the policy enforcement engine and includes a list of allowed executable ad-
dresses (offsets) inside the library. These addresses mostly correspond to the
start of library functions, although there may be unrelated addresses where
the program jumps to under normal execution. This list is the security policy
that needs to be checked in order to allow the call to continue or not.

According to our security assumptions (see Section 3.3), we expect the
library designer to provide us with the complete and correct list. However,
for testing purposes, we leverage our previous approach in [TP17] to extract
the relevant addresses from the OpenSSL library. The format of the policy is
"<function>", <offset>. In order to perform the policy check, we traverse
the list and compare the calculated offset of the faulting address against the
offset in each element.

In order to compile the gate library, we leverage the way the kernel com-
piles the vDSO library [Ker]. The vDSO (virtual Dynamic Shared Object) is
a Linux kernel mechanism that maps a special library in the address space of
each process automatically. This library exports specific kernel-space read-
only functionality to user-space (e.g. read a variable), in order to dispense
with the otherwise necessary system call and reduce overhead. Whenever
the kernel is built, it compiles the vDSO and when a process starts, the ker-
nel maps the vDSO in its address space dynamically, so it can use the ex-
ported functionality. We compile our custom library in a similar way, using
also a customized version of the special linker script that the kernel uses for
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the vDSO. Based on the assumptions that we make about the security of the
underlying system (see Section 3.3), we can digitally sign the policy enforce-
ment engine, to prevent it from being tampered with. The compilation as a
shared library is done with the command in Listing 5.1.

1 gcc − n o s t d l i b −o g a t e _ l i b r a r y . o −fPIC −shared
2 −Wl, −T , gate −layout . lds . S −Wl,−−hash− s t y l e =both
3 −Wl,−− build −id −Wl, − Bsymbolic −m64
4 −Wl, −soname= g a t e _ l i b r a r y . so −Wl,−−no−undefined
5 −Wl, −z , max−page− s i z e =4096 −Wl, −z , common−page− s i z e =4096
6 −e pol icy_enforcement g a t e _ l i b r a r y . c &&
7 objcopy −S g a t e _ l i b r a r y . o

LISTING 5.1: Compiling the gate

Mapping and Inserting Gates

After opening the gate library object file (gate_library.o), we read it and
copy it to memory. Then, we perform some simple consistency checks
regarding its type, architecture, and program headers. Following, we
map it to a kernel memory area. In order to do that, we first loop
through all the VMAs and select the executable ones based on their flags
(vma_mmap->vm_flags & VM_EXEC). However, there are two cases in which we
ignore a selected VMA:

• If it is a gate VMA (one that we have previously inserted). We don’t
want to change anything there.

• If we have already associated it with a gate VMA. With each executable
VMA we associate one gate VMA, where we redirect execution.

In order to be able to perform these checks, we modify the vm_area_struct
(see Section 5.3.5) by adding an extra field (special_vma) that designates the
special VMA (where our gate is mapped in) that is associated with the exe-
cutable VMA. Furthermore, we add another field (is_special_vma) to show if
the VMA is a gate or not.

If these checks are passed, we get the starting address of a free (un-
mapped) area from mm_struct, just big enough to fit the gate. After some
sanity checks on the address, we allocate some space in the kernel vm_area
slab cache (kmem_cache_zalloc()), we insert the gate in the process’s address
space and finally remap it to user-space, in order the appropriate physical
pages be associated with it.

5.3.8 Private Memory Mapping

Separation of data used by the libraries from data used by the running appli-
cation is another significant aspect of our security framework. Originally, the
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application and library code share their stack and heap spaces, which pro-
vides a breeding ground for interfering with the execution of library code.
If a security mechanism controls entry to a particular region (e.g., a library),
it can also enable access to private data pages associated with that region.
When the CPU executes code within a given region, its private pages are
mapped. When execution is transferred outside the region, the associated
pages get unmapped and the private memory becomes inaccessible. In this
way, each region can maintain state (e.g., which part of the program tried to
access it, how many times a given routine has been called, or the sequence of
calls to its various functions).

In this Section, we refer to our effort to implement the notion of a TEE
at the memory space of a user application. Hardware vendors (e.g., In-
tel) have already implemented the concept of TEE into their products (e.g.,
SGX technology). Virtual TEEs (e.g., Open-TEE [Lim21]) allow develop-
ers to create trusted applications using the GlobalPlatform TEE specifica-
tion [Glo21]. Related work proposes mechanisms that push sensitive objects
into isolated memory regions, called safe regions [Kon+17], that can only be
accessed by privileged program instructions. These regions protect sensitive
program data, such as code pointers [Kuz+14], cryptographic keys [Gua+15],
or programmer-defined structures [CP17; Dau+15]. Access to these regions
is achieved in two ways: either (a) monitor all unsafe accesses (e.g., sandbox-
ing them using SFI or MPX [CP17; Kon+17; Wah+93a; Seh+10]), or (b) switch
between protection domains (as in SGX, TrustZone, MPK, VMFUNC [CP17;
Kuv+17]). Other implementations enforce policies at instruction/word gran-
ularity [Dha+15; Son+16; CCH06], but require significant hardware enhance-
ments [MRD18].

In our case, since we already have a mechanism that allows us to rewrite
the Page Table whenever a library boundary is crossed, we can now extend
it by programming the MMU in such a way so as to map protected pri-
vate pages for every library into the address space of a running program,
which are accessible only by specific functions inside the gate libraries of said
program. Upon interception of a library call, our system - after redirecting
the call through the gate - determines if the call can access the information
stored securely in the newly-mapped private memory. These pages are only
mapped when the CPU executes code within the associated library. When
execution is transferred outside the library, the pages get unmapped.

In this way, we protect sensitive code/data inside a secure enclosure,
which need protection against disclosure, tampering, execution, etc. Con-
sequently, we minimize what can access them, as we limit their exposure to
only a specific set of legitimate functions found in the gate library, imposing
serious limitations on what actions can be performed on the protected data,
by what part of the program and at which point in execution time. Figure 5.5
shows a representation of this approach. This procedure is also performed
automatically and transparently to the execution.
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FIGURE 5.5: Secure memory mapping

Application Programming Interface

In order to facilitate the use of this extended capability, we propose an Ap-
plication Programming Interface (API) analogous to the one used for shared
memory [Ker08]. Listing 5.2 showcases a sample of our API, where the code
has the ability to allocate a private memory space to a specific region.

1 . . .
2 char * addr ;
3 i n t fd ;
4 fd = scrm_open ( PAGE_SIZE , <FLAGS> ) ;
5 addr = mmap(NULL, PAGE_SIZE ,
6 PROT_READ | PROT_WRITE,
7 MAP_PRIVATE, fd , 0 ) ;
8 scrm_assoc ( < c a l l e r > , fd , addr ,
9 addr + PAGE_SIZE ) ;

10 . . .
11 scrm_unlink ( fd ) ;
12 . . .

LISTING 5.2: Usage example of Secure API

First, we create a secure memory (scrm) object with specific flags and its
size set to that of a page (line 4). Then we map the object into the process’s ad-
dress space (line 5). Following, we associate the object with the caller (a given
region) in line 8. Finally, after some processing we return the memory to the
system, by unlinking the scrm object. By using this interface, library design-
ers can take advantage of private memory to protect internal data structures
e.g., making them completely inaccessible (no read/write/execute rights) to
the rest of the program.
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5.3.9 Optimizations

During the course of development two major issues arose that caused crashes
when instrumenting complex applications: (a) the speed of our version of a
shadow stack and (b) synchronization when marking PTEs as NX, as well as
when instrumenting all subsequent processes of a specific process.

Shadow Stack

Initially, we were concerned about the large number of PTEs that needed to
be updated every time we cross a library boundary. However, we assumed
- and our experiments confirmed - that only a small subset of pages of a
given library need to be executable (and will consequently produce a page
fault) when execution moves from one region to another. For this reason,
at first, we decided to use the shadow-stack-like structure (described in Sec-
tion 5.3.4), in order to identify this subset of PTEs that actually need to be
modified during the transition. In this way, we achieved marking each pre-
vious library as non-executable without incurring the overhead of having to
update thousands of entries in the page table; only the ones where a page
fault occurred.

Furthermore, in order to adhere to the library-level granularity of our de-
sign, we employ lazy clearing of the NX-bit i.e., we perform it only for the
current faulting address. As an artifact of this approach in our implemen-
tation, we had additional faults while execution remained within the same
library in-between calls (which resulted in a number of faulting addresses
being added in the shadow stack as described before), in which case we re-
frained from going through the gate.

While the shadow stack approach works perfectly well for simple appli-
cations with small memory footprint, after extensive testing, we identified
that there were issues when dealing with more complex applications. In the
implementation of our initial version (Figure 5.4), we would dynamically al-
locate (using kmalloc()) some kernel memory when inserting an item and
free it (using k f ree()) when removing an item, from the shadow stack. These
functions entail allocating and freeing memory in the slab CPU cache among
other things, but they were performed for every page fault that we caused
(meaning in high numbers). This led to a bottleneck, since the cache op-
erations are much faster. Consequently, it caused continuous crashes when
trying to free memory from the slab cache (specifically in __slab_ f ree()) and
resulted in the mechanism not being functional. We realized that only one
item was added to/removed from the shadow stack in each cycle. Hence,
we modified the custom shadow stack field in task_struct into a simple vari-
able and removed the ShadowStackNode representation from the kernel (see
Section 5.3.5), dispensing with the overhead of the extra memory operations
and the subsequent crashes.

The main takeaway from this realization, is that we manage to lower the
performance/memory overhead even more, since we now need space and
CPU execution time to save only one faulting address and not tens of them.
Secondarily, our framework takes up even less LoC than before. Figure 5.6
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FIGURE 5.6: Compartmentalizing an application at library-
level granularity, without a shadow stack

shows the updated approach. As is evident, the basic idea behind compart-
mentalizing an application at library-level granularity is the same as in Sec-
tion 5.3.4, having eliminated however the use of the shadow stack.

Synchronization

Initially, we followed the procedure described in Section 5.3.1 (marking both
VMAs as well as corresponding PTEs as NX) at the starting phase of a pro-
cess. However this caused several issues. To mark a VMA as NX, it is suf-
ficient to change its flags (vma_mmap�vm_flags &= ~VM_EXEC), which is done
in a single function call (vma_set_page_prot()). On the other hand, a VMA
comprises of a very high number of addresses which we must loop through
individually, if we want to mark the corresponding PTEs as NX. At first, we
were performing both of these sequences to mark a VMA as NX. However,
at the PTE marking stage, as we started to iterate the addresses, the corre-
sponding PTEs became NX in each iteration. So, when a call was issued to
an address before this procedure was completed, if the corresponding PTE
was already NX then the page fault was caused, as it should be. However, if
the PTE was still X, there wasn’t a page fault thrown and the execution con-
tinued as if there was no instrumentation. This led to undefined behavior,
which resulted in crashes in some cases. More importantly, we managed to
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identify that this is a typical race condition (which can be taken advantage of
under specific circumstances), which is a difficult task in itself.

Another synchronization issue when marking all relevant PTEs as NX,
has to do with the spawned processes (children) of a specific process (parent).
When a child is initialized, it inherits the parent’s memory layout. However,
in most cases the PTE NX marking in the parent was not finished by the
time the child was initialized. This left the child in an inconsistent state and
resulted in erratic behavior and crashes.

For these reasons, we decided to not perform the PTE NX marking in the
starting phase, since we detected that it is not mandatory for our mechanism
to function correctly. This resolved all aforementioned issues.

5.4 Use-Case Study

In this section, we present a scenario where a vulnerability of an application
is exploited to affect the underlying system. In our use-case, we use a vul-
nerable version of NGINX HTTP server, where a buffer overflow is triggered
under specific circumstances to launch a Denial-of-Service (DoS)/arbitrary
code execution attack, in order to compromise the application. By using our
custom kernel to observe the calls the server issues to external library func-
tions (and the subsequent internal library calls), we can better understand the
behavior of the attack and provide a signature of the way it works. Hence,
we can recognize it when it happens and block it before causing any damage.

As mentioned in Section 3.5, CVE-2013-2028 [Com13] is a stack-based
buffer overflow vulnerability that affected NGINX server versions 1.3.9
through 1.4.0 with the default setup. Although it was addressed in later ver-
sions, we can use our prototype to examine the chain of calls that NGINX
makes to its external libraries (as well as the internal library calls), which
result in a crash or remote shell when the vulnerability is exploited.

5.4.1 Applying the custom kernel/MMU

There are several exploits available online [sor13; Mer13; Mhs13; w0013;
dan13] implementing either a DoS attack or a CRA as proof-of-concept. In
order to prove the applicability and effectiveness of our custom kernel, we
chose a ROP attack described in [w0013] due to the simplicity of the exploita-
tion script and its impact in real-world applications.

From the excerpt of the output of our approach in Figure 5.7, we can see
what happens when the exploit is run against the vulnerable NGINX server.
We can distinguish both cases where the current executable/library is both
different and the same as the previous one. For example, in lines 8-16 the
flow of execution is inside the main executable. In lines 9 and 10, we can
see that when the fault occurs, the VMA is non-executable (r −−p), as well
as the PTE (NX-bit 1, SET). Continuing, we mark the current PTE and VMA
as executable (NX-bit 0, CLEAR and r − xp). Since previously (lines 1-7) the
flow was inside a different library (libpthread), that library is now marked
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FIGURE 5.7: Custom kernel output after exploitation

as non-executable. However, in the next iteration (lines 17-23), although the
VMA remains the same so it is executable as before (lines 18 and 21 r − xp),
the PTE changes (line 19), so we get a page fault which we intercept and
rectify (line 20) in order to continue executing.

As the exploitation unfolds, we monitor its progress and we manage to
identify a characteristic sequence of calls to executables/libraries (including
the internal ones) and produce a trail of it (Figure 5.8). Consequently, the
next time our mechanism recognizes the same fingerprint, it will be able to
intercept and mitigate the attack.

5.4.2 Performance Evaluation

We leverage the Phoronix Test Suite (PTS) [Pts] to evaluate the efficiency of
our mechanism. Specifically, we run the OpenSSL benchmark test, since we
have already instrumented the relevant library (Section 5.3.7). Our test-bed
is mentioned in Section 3.4.

We run the benchmark test for both cases: (a) default untouched kernel,
(b) kernel with customized MMU. The outcome reports on the number of
RSA 4096-bit sign operations per second. Figure 5.9 shows details of the col-
lected data (rounded numbers) for 5 repetitions of the test, while Figure 5.10
summarizes the results.

The default kernel is consistent in its performance, as is evident, since it is
optimized by-default. It outputs 696 signs per second in each iteration (the
same number occurred in other test runs, as well).
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FIGURE 5.8: Sequence of libraries and number of calls inside
each library

The customized kernel, on the other hand, presents some minor fluc-
tuations, especially at the start of the testing. The first iteration is always
higher in output (690 signs/second). After that, the rest of the phases are
normalized in lower numbers (680-681 signs/second). The same behavior
was exhibited in other test runs, as well. We attribute this behavior to the
fact that our mechanism is a prototype that customizes critical parts of the
kernel. Consequently, these parts may not be operating optimally, which
requires further research and development.

In summary, the default setup is performing better, as can be expected. 696
signs per second on average, compared to around 682 signs per second on av-
erage. However, there is only minimal decrease in performance when using
our custom kernel, of about 2%.

5.5 Training Environment

Aspects of the approach described in this Section, have been incorporated in
the training platform developed as part of the THREAT-ARREST EU H2020
research project 1. There, two training scenarios are offered to the trainees
that represent two skill levels: (a) the “Software Exploration” scenario cor-
responds to the beginner-level scenario, while (b) the second one “Run-time
analysis and modification” corresponds to the more advanced level.

1https://www.threat-arrest.eu/
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FIGURE 5.10: Performance evaluation of our mechanism using
the OpenSSL benchmark of PTS

5.5.1 Software Exploration

In the “Software Exploration” scenario, a user that is trained on using our
system must observe the occurrence, the number and the sequence of calls
and try to identify if and when an attack happens. In this case, by leveraging
the NGINX HTTP server vulnerability as described in Section 5.4 to observe
the calls the server issues to external library functions (and the subsequent
internal library calls), the trainee can better understand the behavior of the
attack and provide a signature of the way it works. Hence, they can recognize
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it when it happens and report it.
As the exploitation unfolds, our platform updates two files with the out-

put results of both user- (similarly to the excerpt in Section 4.1.3) and kernel-
side (similarly to Figure 5.7) mechanisms. At first, the trainee must monitor
the contents of both files. On one hand they are expected to identify which
functions are called inside the OpenSSL library (used by NGINX as well)
and what these functions perform. On the other hand they must identify not
only the occurrence, but a characteristic sequence of calls to executables/li-
braries as well as the number of consecutive internal calls that correspond to
the exploit and produce a trail of it (similarly to Figure 5.8). Next, based on
their observations, they must develop a small program in a language of their
preference that monitors the files as they are updated by our platform and
whenever it intercepts the characteristic signature from the previous steps, it
produces an alarm to notify the trainee that an attack was attempted. Con-
sequently, the next time that the trainee will run the scenario, they will be
expected to report the alarm to the trainer.

5.5.2 Run-time Analysis and Modification

After the initial introduction to software exploration, the trainee is given the
opportunity to continue to the more advanced level. Initially, they are pre-
sented with a piece of software and allowed to install it, read available doc-
umentation and run some examples of its use. Then the trainee is shown the
block diagram of the program and related libraries and is asked to create a
call graph showing the control flow paths between elements of the system.
Further analysis may be used to identify items of interest (IoI) in the design
(e.g., the transfer of an encryption key to a routine, the creation of a network
connection, access to a file, etc.). For each identified IoI, a decision needs to
be made as to whether it is worth monitoring and if so to which extent (just
the invocation of a function, examination of one or more of its arguments,
and so on).

After running the program a couple of times under our framework to col-
lect invocation data and confirm some of the initial hypotheses related to the
design of the program, the trainee can start the process of active interference
in the execution of the program by modifying arguments to functions, or re-
turn values etc. Further runs of the program will demonstrate the impact of
the modifications, and hopefully shed light to its internal design.

Finally, the trainee must produce a report with their findings, on which
they are evaluated at the end of the scenario.

5.6 Summary

In this Chapter, we present the counterpart of the work explained in the pre-
vious Chapter, this time on the side of the Linux kernel, which intercepts
calls to external libraries/executables (irregardless of them being statically
or dynamically linked), as well as internal calls within them, in an efficient
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manner. This way, we are able to manipulate the flow of execution, monitor
access to executables/libraries and change their functionality when there is
suspicion of foul play. We, also, exploit a known NGINX vulnerability and
produce a characteristic trail of calls that shows the high-level behavior of
the application under attack.

Furthermore, we present a training platform that leverages the two ap-
proaches combined: (a) a library wrapper that is inserted between a program
and the original library code and (b) a kernel modification that intercepts all
calls to libraries/executables. The platform is included in a training environ-
ment of the THREAT-ARREST EU H2020 project, which shows that it can
be applied to a real-life scenario. As part of this environment, we present
two training exercises where we give the trainee the opportunity to explore
how a program behaves and modify its execution when under attack. Our
approaches are transparent and can be used on binary/legacy applications
and existing environments, as well as serve as a complimentary measure of
defense alongside already implemented mechanisms.
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Part III

THE END
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6
Requirements, Evaluation and

Future Directions

As is evident from Chapter 2, which contains a small sample of related work,
over the last several years there has been a lot of effort to counter Code In-
jection/Reuse Attacks and the arms race is never-ending. This list of pub-
lications contains protection techniques that can be divided into two main
categories: probabilistic and deterministic. Probabilistic solutions (see Sec-
tion 2.2.1) build on randomization or encryption. All other approaches (see
Sections 2.2.2 and 2.2.3) offer deterministic protection by implementing a
low-level reference monitor [Sch00]. A reference monitor observes the pro-
gram execution and halts it whenever it is about to violate a given security
policy. Traditional reference monitors enforce higher-level policies (such as
file system permissions) compared to CFI-like approaches, and are imple-
mented in the kernel (e.g., system calls) [Sze+13].

Reference monitors enforcing lower-level policies, e.g., Control Flow In-
tegrity, can be implemented efficiently in two ways: in hardware or by em-
bedding the reference monitor into the code. For instance, the W

⊕
X/NX-

bit [WX03; DEP04; AA04] mechanism is now enforced by the hardware, as
modern processors support both non-writable and non-executable page per-
missions. Hardware support for a protection mechanism results in negligible
overhead [Cop+19]. The alternative to hardware support is adding the ref-
erence monitor to the code. Simple reference monitors can be implemented
with low overhead (e.g., a shadow stack version costs around 6.5% in perfor-
mance on average in [TP19]), whereas more sophisticated reference monitors
like taint checking [BSB11] or ROP detectors [DSW11] result in overheads
that exceed 100% and are unlikely to be deployed in practice [Sze+13].

In this Chapter, we present a systematic way of evaluating our overall ap-
proach and comparing it with the state of the art. In Section 6.1, we position
our work with respect to the related research contained in Chapter 2, based
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on the type of protection that we offer. In Section 6.2, we set the requirements
that we believe a security mechanism must abide by, in order to be practical
and widely adopted. Section 6.3 presents the comparison of our approach
against the state of the art. In Section 6.4, we discuss open issues that future
research can tackle. Finally, we summarize the Chapter in Section 6.5.

6.1 Placement

Our approach observes a program’s execution and applies a predetermined
security policy, for every call that it intercepts. Evidently, based on the previ-
ous, it is classified as a reference monitor. Furthermore, taking into account
the way that we design and implement our mechanism, we place our ap-
proach on the intersection of the two types of deterministic protection, i.e.,
access/behavior control and execution monitoring. Additionally, with re-
gards to the level at which we enforce the security policies, our approach’s
position is two-fold: (a) the work in Chapter 4 interjects between an appli-
cation and the kernel at run-time, while (b) the work detailed in Chapter 5
is embedded into the kernel and observes execution from one level below.
Hence, our overall mechanism enforces higher-level protection compared to
lower-level approaches (e.g., CFI), similar to a traditional reference monitor.

Taking our placement into consideration in order to evaluate and com-
pare our work against the related work in Section 2, we only focus on work
that is most relevant to our own, i.e., control and monitoring mechanisms
(Sections 2.2.2 and 2.2.3 respectively). The probabilistic techniques are re-
lated to ours only in the sense of defending against C[IR]As and are included
for the sake of completeness. However, since we offer no support for ran-
domization or encryption, we consider this category out of scope and do not
cover it in the comparison. Furthermore, the rest of the mechanisms (i.e.,
hardware approaches and shadow stacks) are notions that are implemented
in some way in the literature as well as our approach, and are thus compared
only as part of the overall respective related work.

6.2 Requirements

When designing a framework for securing a computer system, some objec-
tives need to be reached. We have briefly mentioned the main properties
and requirements that our solution meets, in Section 1.2. Here, we discuss
them in more detail. These properties determine the practicality of a pro-
posed method, more specifically, whether or not it is suitable for widespread
acceptance and adoption.

(R1) Effectiveness: The security mechanism should be able to monitor all
communication paths during execution and allow it to continue, only
when strict and specific circumstances are met. Compared to other ap-
proaches that operate at a lower level, our approach is based on the
fact that at some point a high-level call - either benign or malicious -
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will be made to a function. So, it intercepts all calls - both local (within
a specific region) and remote (between two regions) - before enforcing
a security policy in order to decide if the execution flow is allowed to
continue or not down the intended path.

(R2) Accuracy is an important attribute, too. The aforementioned circum-
stances should only lead to benign, nominal execution paths. Further-
more, they should not allow either false positives/alarms (e.g., unnec-
essary crashes) or false negatives (protection failures) to manifest. The
accuracy of an approach can determined by the way the enforced se-
curity policy is provided and how comprehensive it is. In our case,
the policy can either be generated automatically, e.g., by the system
administrator (less comprehensive), or ideally be supplied by the ap-
plication/library designer (most comprehensive).

(R3) Transparency is of paramount importance for the security layer. Ap-
plications must continue to work as originally intended by the devel-
oper without interrupting execution, but the security mechanism un-
derneath should deliver a secure run-time environment. In our case, for
example, if an untrusted application is hijacked and requests to write
in a privileged file (e.g., /etc/passwd that contains user account infor-
mation), this would constitute a suspicious action. The mechanism can,
then, create a temporary, empty file and modify the arguments of the
call so that the application has access only to the dummy file.

(R4) Compatibility: A security system should not require any kind of access
or manual modifications to an application’s source code, which in most
cases is not available. The need of even minimal human intervention
or effort makes a solution not only unscalable, but too costly as well, in
terms of both time and money. Additionally, the security layer should
be compatible with applications distributed in binary form, irregardless
of the development language. Our solution has no need for access to
source code and is compatible with binary/legacy applications, as well.

(R5) Efficiency: Since there is an extra layer introduced that monitors/al-
ters the execution of an application, there is bound to be some perfor-
mance overhead associated with it. One fundamental requirement of
this layer is to leave as little run-time performance and memory foot-
print as possible, in order to secure widespread acceptance and adop-
tion. Otherwise, if it impedes or completely prevents the execution of
a program, the user will disable the security feature. Some believe the
average overhead should be no more than roughly 10% on average, in
order the security mechanism gain wide adoption in production envi-
ronments [Sze+13]. Our mechanism incurs only minimal overhead of
about 2% on average.

(R6) Automation: Besides avoiding to impede/prevent the execution of a
program, the end user usually requires that any security measure takes
little to no extra effort on their part to be implemented. In a different
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case, they may choose to ignore the mechanism, if it takes more of their
time. Hence, the mechanism should strengthen the system’s security
ideally automatically, without requiring any kind of intervention on
the user’s part. Under our scheme, after the initial instrumentation by
the system administrator (custom kernel build), the end user need not
take any other action.

(R7) Collaboration/coexistence of the new security layer with other exist-
ing solutions is also pivotal to its practicality and adoption, as well as
the security and availability of the overall system. As already estab-
lished, absolute security of a computer system cannot be achieved, so
there are several practices and measures employed to make sure the
system is protected to the highest degree possible. Approaches such
as ASLR [PaX01], W

⊕
X/NX-bit [WX03; DEP04; AA04] and stack ca-

naries [Cow+98; WC03] are enabled by default in most modern sys-
tems and protect against a range of vulnerabilities and subsequent at-
tacks. Our solution is orthogonal to these approaches and works well
in conjunction with them, so that all together can better protect the un-
derlying system.

6.3 Evaluation and Comparison

In this Section, we present a cumulative list of the several solutions presented
in Section 2 and denote if the requirements set in the previous Section are
met by each one (Table 6.1). More specifically, as already mentioned (Sec-
tion 6.1), we focus only on research in Sections 2.2.2 and 2.2.3. Furthermore,
we include the performance overhead for each of these solutions, in order to
compare them with our own. The last three entries represent our own work.

As we can clearly see, most of the related work falls short in some as-
pect compared to our framework. That been said, we stress that, compar-
ing our proposed mechanism with existing ones is a challenging task due to
the difficulty of reproducing in our testbed the previous results of most of
the research. The properties and performance values represent implementa-
tions in different environments, different configurations and sometimes mea-
surements with different sets of benchmark programs, so they only provide
rough estimates. Additionally, due to the aforementioned reasons, we rely
on information reported by the authors/developers of the tools, to populate
the table. Whenever information for a requirement cannot be derived from
the authors themselves or from our understanding of their work, the corre-
sponding entry is marked as not available (a dash in the Table). Lastly, some
approaches are implemented in hardware, so they cannot be directly and
completely compared to ours.

Strictly speaking, there is a number of mechanisms directly comparable
to our own. Based on some aspects of the implementation (i.e., kernel modi-
fications), most relevant to our work are the approaches authored by Gionta,
Enck and Ning [GEN15] and Bakes et al. [Bac+14]. These mechanisms are
also relevant to each other, since they both try to apply some kind of Execute
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and Read permissions in the kernel. Furthermore, relevant to our work is
the work published by Lin et al. [Lin+21], which (a) divides the executable
(.text) section of a program into smaller segments (at function granularity)
and (b) diverts execution to an added memory block (Trampoline - similar to
out gate) that computes and validates the correct call target address at run-
time. Moreover, comparable to our approach is the work presented in [BR21].
There, the authors isolate each library of a program in its own space and
control the interactions between them and the main program. The other ap-
proaches either have a hardware/hypervisor component and/or generally
try to force execution to adhere to a precomputed graph or to provide execu-
tion of multiple variants of the same application.

In [GEN15], the authors calculate a probability of less than 16% for a
specific set of applications where an adversary could potentially circumvent
their defense, which leads to requirements R1 and R2 being partially fulfilled.
On the contrary, our approach traps all execution attempts and since a com-
plete security policy is provided by the application developer, R1 and R2 are
both fully met. Furthermore, they rely on fine-grained binary randomization
techniques (in order to prevent adversaries from gaining knowledge of code
protected in memory), which are not enabled by default in most systems (so
R7 is partially fulfilled).

Similarly, in [Bac+14], the authors leave a scenario open where an attack
could bypass their mechanism under specific circumstances and execute suc-
cessfully. Additionally, they assume the use of a more fine-grained variant
of ASLR [Dav+13; His+12; War+12] not used by default, in order their ap-
proach work as expected. Our framework, however, works seamlessly with
the by-default enabled mechanisms without requiring any additional layer,
fulfilling requirement R7.

In [Lin+21], Lin et al. identify the instructions to be instrumented in-
side a red area which must conform to a number of conditions. This means
they do not replace all fetch instructions, but only the ones located in a red
area (i.e. they do not cover all execution paths). This course of action leaves
a chance open that false positives/negatives will be presented, leading to
requirements R1 and R2 being partially fulfilled. Furthermore, the applica-
tion’s binary needs to be statically analyzed and instrumented, which is not
fully in-line with requirement R6.

In [BR21], Bauer and Rossow rely on static analysis to produce the PDG
which helps them infer which library calls the program will potentially make.
Consequently, this leaves a chance that some paths may not be included in
the PDG leading to false negatives, thus requirements R1 and R2 are partially
fulfilled. Additionally, when implementing their approach they need access
to the source code of the main program in order to rewrite all calls to library
functions with calls to replacement functions that they have created. Thus,
requirement R4 is not fulfilled. The required static analysis and instrumenta-
tion also leaves requirement R6 partially fulfilled.
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TABLE 6.1: Comparison with other approaches from literature

Study Requirements

R1 R2 R3 R4 R5 R6 R7 Overhead

Provos [Pro03] – 0.2% - 31% *

Kim et al. [KP06] – 10x

Abadi et al. [Aba+05] <45% *

Kayaalp et al. [Kay+12] <7% *

Das et al. [DZL16] <1%

Kanuparthi et al. [KRK16] 4.7%

Niu and Tan [NT14a] 4% - 6%

Niu and Tan [NT14b] 14.6%

Niu and Tan [NT15] 3.2%

Gionta, Enck and Ning [GEN15] 1.49%

Backes et al. [Bac+14] 2.2%

Zhang et al. [Zha+13] 0.4%

Habibi et al. [Hab+15b] 2.85%

Kanuparthi et al. [Kan+12] – 1.66%

Kayaalp et al. [Kay+15] <2%

Tian et al. [Tia+14] 9.5% - 12% *

Crane et al. [Cra+13] – –

Liu et al. [Liu+14] 20% *

Volckaert et al. [VCS16] 6.37% - 8.94% *

Zeng et al. [ZZL15] 6.2%

Lin et al. [Lin+21] 6.74%

Bauer and Rossow [BR21] 0% - 6.5% *

[TP17] – –

[TP19] 1.3% - 11.4%

[TP21a; TP21b; Tsa21] 2%

– Not available | Not fulfilled | Partially fulfilled | Fulfilled

* Depending on the system configuration / benchmark / application

6.4 Future Directions

Moving forward, we have identified a number of open issues that point to
promising directions in research efforts.

First and foremost, we mention policy generation. In the effort towards
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delivering this thesis, we provided our approach to produce security poli-
cies, by analyzing a well-known application (Section 4.3). However, we fol-
lowed this path only to support the development of our prototype. It was
not our intention to provide a policy generation mechanism, which is left out
of the scope of the thesis. As already mentioned, we expect to be supplied
with a correct and complete security policy by the app/library developers.
Although research in the area in various domains has been ongoing [FW01;
ASCW19; Li+21], we envision additional future research to tackle with the
important issue of automatic policy generation, in order to minimize interac-
tion with the developers and enable users to describe the required function-
ality in an intuitive manner.

Another direction is to port our mechanism to other platforms. Our de-
velopment efforts were performed on the Intel x86-64 architecture and the
Linux OS where specifically we modified the MMU. Future efforts can fo-
cus on different platforms (e.g. ARM, Windows, etc.) and possibly create a
portable version to provide cross-platform interoperability.

Finally, an important aspect on which to perform research, is optimiza-
tion. During development, we identified and implemented two important
improvements (Section 5.3.9) that optimized the functionality and efficiency
of our initial approach. More research can be performed in this respect, in
order to further improve our mechanism.

6.5 Summary

In this Chapter, we place our framework among the related work described
in Sections 2.2.2 and 2.2.3. We, then, set a number of attributes that a mech-
anism needs to have in order to be practical and evaluate the state of the art,
as well as our approach, based on them. From this comparison - which is
not complete due to several differences - it is evident that our approach is
among the most concrete solutions to date. Finally, we set a course for future
research directions in order to improve our design and implementation.
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